Background: Chromosome instability (CIN) with recurrent copy number alterations is a feature of many solid tumors, including glioblastoma (GBM), yet the genes that regulate cell division are rarely mutated in cancers. Here, we show that the brain-abundant mitogen, platelet-derived growth factor-A (PDGFA) fails to induce the expression of kinetochore and spindle assembly checkpoint genes leading to defective mitosis in neural progenitor cells (NPCs).
Methods: Using a recently reported in vitro model of the initiation of high-grade gliomas from murine NPCs, we investigated the immediate effects of PDGFA exposure on the nuclear and mitotic phenotypes and patterns of gene and protein expression in NPCs, a putative GBM cell of origin.
Oligodendroglioma is the quintessential molecularly-defined brain tumor. The characteristic whole-arm loss of the long arm of chromosome 1 and the short arm of chromosome 19 (1p/19q-codeletion) within the genome of these tumors facilitated the reproducible molecular identification of this subcategory of gliomas. More recently, recurrent molecular genetic alterations have been identified to occur concurrently with 1p/19q-codeletion, and definitively identify these tumors, including mutations in IDH1/2, CIC, FUBP1, and the TERT promoter, as well as the absence of ATRX and TP53 alterations.
View Article and Find Full Text PDF