Parkinson's disease (PD) is characterized by the accumulation of misfolded alpha-synuclein (α-syn) protein, forming intraneuronal Lewy body (LB) inclusions. The α-syn preformed fibril (PFF) model of PD recapitulates α-syn aggregation, progressive nigrostriatal degeneration and motor dysfunction; however, little is known about the time course of PFF-induced alterations in basal and evoked dopamine (DA). In vivo microdialysis is well suited for identifying small changes in neurotransmitter levels over extended periods.
View Article and Find Full Text PDFParkinson's Disease (PD) is a neurodegenerative disorder characterized by motor symptoms that result from loss of nigrostriatal dopamine (DA) cells. While L-DOPA provides symptom alleviation, its chronic use often results in the development of L-DOPA-induced dyskinesia (LID). Evidence suggests that neuroplasticity within the serotonin (5-HT) system contributes to LID onset, persistence, and severity.
View Article and Find Full Text PDFParkinson's disease associated psychosis (PDAP) is a prevalent non-motor symptom (NMS) that significantly erodes patients' and caregivers' quality of life yet remains vastly understudied. One potential source of PDAP in late-stage Parkinson's disease (PD) is the common dopamine (DA) replacement therapy for motor symptoms, Levodopa (L-DOPA). Given the high incidence of L-DOPA-induced dyskinesia (LID) in later phases of PD, this study sought to characterize the relationship between PDAP and LID in a bilateral medial forebrain bundle 6-hydroxydopamine hydrobromide (6-OHDA) lesion rat model.
View Article and Find Full Text PDFResponse to cancer immunotherapy in primary versus metastatic disease has not been well-studied. We found primary pancreatic ductal adenocarcinoma (PDA) is responsive to diverse immunotherapies whereas liver metastases are resistant. We discovered divergent immune landscapes in each compartment.
View Article and Find Full Text PDFParkinson's disease (PD) is a progressive, neurodegenerative movement disorder caused by loss of nigrostriatal dopamine (DA) neurons. DA replacement therapy using L-3,4-dihydroxyphenylalanine (l-DOPA) improves motor function but often results in l-DOPA-induced dyskinesia (LID) typified by abnormal involuntary movements (AIMs). In states of DA depletion, striatal serotonin (5-HT) hyperinnervation and glutamate overactivity are implicated in LID.
View Article and Find Full Text PDFChronobiol Int
July 2022
Jet lag can impair a variety of physical and mental functions. The impact of jet lag on athletic performance has been assumed but difficult to prove methodologically. The challenges have involved eliminating the impact of the quality of the opponent and the difficulties determining when an athlete actually traveled across time zones.
View Article and Find Full Text PDFPsychopharmacology (Berl)
July 2022
Parkinson's disease is a neurodegenerative disease often characterized by motor deficits and most commonly treated with dopamine replacement therapy. Despite its benefits, chronic use of L-DOPA results in abnormal involuntary movements known as L-DOPA-induced dyskinesia. Growing evidence shows that with burgeoning dopamine cell loss, neuroplasticity in the serotonin system leads to the development of L-DOPA-induced dyskinesia through the unregulated uptake, conversion, and release of L-DOPA-derived dopamine into the striatum.
View Article and Find Full Text PDF