Individual predator and prey species exhibit coupled population dynamics in simple laboratory systems and simple natural communities. It is unclear how often such pairwise coupling occurs in more complex communities, in which an individual predator species might feed on several prey species and an individual prey species might be attacked by several predators. To examine this problem, we applied multivariate autoregressive state-space (MARSS) models to 5-year time-series of monthly surveys of a predatory fish, the eastern mosquitofish (Gambusia holbrooki), and its littoral zone prey species, the least killifish (Heterandria formosa), in three locations in north Florida.
View Article and Find Full Text PDFAuthors would like to update the incorrect version of Fig. 4 which was incorrectly published in original publication.
View Article and Find Full Text PDFFoundational ecological models characterize dispersal with two behavioral traits, speed and directional bias. We hypothesized that these two traits can predict the order of colonization by fishes in a heterogenous landscape. Colonization patterns following hydrological disturbance were documented from a 20-year multi-site time series of marsh fish, and we evaluated the ability of a two-parameter model to predict these patterns.
View Article and Find Full Text PDFTrait-mediated indirect interactions (TMII) play an important role in structuring natural communities, and numerous studies have experimentally demonstrated their presence in a variety of systems. However, these studies have largely examined the presence or absence of traits that are responsible for these interactions, without considering natural variation between individuals in the extent to which these traits are manifested. We used a well-documented TMII to investigate the importance of individual behavior type for determining the strength of the TMII.
View Article and Find Full Text PDF