Publications by authors named "John Gardiner"

Article Synopsis
  • A study called the THRIVE trial is looking at how exercise can help Hispanic/Latinx and Black cancer patients who are getting chemotherapy and might not be very active.
  • The trial includes 45 patients who are split into three groups: one gets supervised exercise at home, another exercises on their own, and the last group does stretching exercises.
  • Researchers will check how much exercise the patients do and other health factors before, during, and after the 16-week program to see what works best.
View Article and Find Full Text PDF

Augmenting the natural melanocortin pathway in mouse eyes with uveitis or diabetes protects the retinas from degeneration. The retinal cells are protected from oxidative and apoptotic signals of death. Therefore, we investigated the effects of a therapeutic application of the melanocortin alpha-melanocyte-stimulating hormone (α-MSH) on an ischemia and reperfusion (I/R) model of retinal degenerative disease.

View Article and Find Full Text PDF

The synthesis of glycopolymers by copolymerising an allyl glucosamine (AG) monomer with co-monomers methyl methacrylate (MMA), acrylonitrile (AN) and 2-hydroxyethyl methacrylate (HEMA) was investigated via free-radical polymerisation of 2,2-azobisisobutyronitrile (AIBN) in dimethylformamide (DMF). Three new copolymers, poly(AG--MMA), poly(AG--AN) and poly(AG--HEMA), were obtained. The chemical structures of the glycopolymers were analysed using H-NMR, C-NMR and FTIR.

View Article and Find Full Text PDF

Reactions of a glucuronic acid (GlcA) β-thioglycoside with cyclohexadione show initial formation of the two anticipated all-trans decalin-type O2,O3 and O3,O4 cyclohexane-1,2-diacetals (CDAs) along with an epimer of the main O2,O3 acetal. This trans-cis isomer is then interconverted leading to higher amounts of the two all-trans products. Isomerization studies indicate slow interconversion between the all-trans CDA acetals, with only one undergoing significant interconversion with the minor 2,3-diastereomer.

View Article and Find Full Text PDF

5-O-Protected and 1,2-acetonide-protected D-glucurono-6,3-lactone furanosides were converted into novel furano-glucuronamides through treatment with ammonia. Several O3 protections and O5-deprotection routes afford new primary gluconamide derivatives. However, attempted O3-benzylations of O5-protected intermediates led instead to silyl migration (from O5-TDBMS), competitive N-benzylation or reclosure to the lactone are observed as competing processes.

View Article and Find Full Text PDF

In order for Man to venture further into Space he will have to adapt to its conditions, including microgravity. Life as we know it has evolved on Earth with a substantial gravitational field. If they spend considerable time away from Earth, astronauts experience physiological, mental, and anatomical changes.

View Article and Find Full Text PDF

Glucuronic acid is a key component of the glycosaminoglycans (GAGs) Chrondroitin Sulfate (CS), Heparin/Heparan sulfate (HS) and Hyaluronic Acid (HA), as well an important metabolite derivative. In biological systems the carboxylate of uronic acids in GAGs is involved in important H-binding interactions, and the role of metal coordination, such as sodiated systems, has indications associated with a number of biological effects, and physiological GAG-related processes. In synthetic approaches to GAG fragments, thioglycoside intermediates, or derivatives from these, are commonly employed.

View Article and Find Full Text PDF

Bacterial lipoproteins (Lpps) are a class of membrane-associated proteins universally distributed among all bacteria. A characteristic N-terminal cysteine residue that is variably acylated anchors C-terminal globular domains to the extracellular surface, where they serve numerous roles, including in the capture and transport of essential nutrients. Lpps are also ligands for the Toll-like receptor 2 (TLR2) family, a key component of the innate immune system tasked with bacterial recognition.

View Article and Find Full Text PDF

Heparan sulfate (HS) and dermatan sulfate (DS) are l-iduronic acid containing glycosaminoglycans (GAGs) which are implicated in a number of biological processes and conditions including cancer and viral infection. Chemical synthesis of HS and DS is required to generate structurally defined oligosaccharides for a biological study. Herein, we present a new synthetic approach to HS and DS oligosaccharides using chemoselective glycosylation which relies on a disarmed [2.

View Article and Find Full Text PDF

Microtubules in eukaryotes have a number of posttranslational modifications catalyzed by an array of enzymes. These modifications alter the properties of the microtubules and the ways in which they interact with partner proteins. In recent years many of the enzymes which modify the microtubules have been identified in animals and protozoans.

View Article and Find Full Text PDF

Synthetic neamine mimetics have been evaluated for binding to the HIV-1 Rev response element. Modified neamine derivatives, obtained from reductive amination of neamine, led to identification of new 6-amino modified neamine-type ligands with HIV-1 RRE binding affinity up to 20× that of neamine and up to 6× that of the more complex neomycin itself. This provides a noteworthy structure-activity increase and a useful lead to simplified, chemically accessible mimetics.

View Article and Find Full Text PDF

The scope for biocatalytic modification of non-native carvone derivatives for speciality intermediates has hitherto been limited. Additionally, caprolactones are important feedstocks with diverse applications in the polymer industry and new non-native terpenone-derived biocatalytic caprolactone syntheses are thus of potential value for industrial biocatalytic materials applications. Biocatalytic reduction of synthetic analogues of R-(-)-carvone with additional substituents at C3 or C6, or both C3 and C6, using three types of OYEs (OYE2, PETNR and OYE3) shows significant impact of both regio-substitution and the substrate diastereomer.

View Article and Find Full Text PDF

Trimethyl citrate, CHO (systematic name: trimethyl 2-hy-droxy-propane-1,2,3-tri-carboxyl-ate), , was prepared by the esterification of citric acid and methanol in the presence of thionyl chloride at 273 K. The bond lengths and angles in compare closely with those observed in citric acid. The C-C bonds adjacent to the terminal carboxyl groups are significantly shorter than those around the central C atom.

View Article and Find Full Text PDF

A chemoenzymatic approach providing access to all four intermediates in the peppermint biosynthetic pathway between limonene and menthone/isomenthone, including noncommercially available intermediates (-)- trans-isopiperitenol (2), (-)-isopiperitenone (3), and (+)- cis-isopulegone (4), is described. Oxidation of (+)-isopulegol (13) followed by enolate selenation and oxidative elimination steps provides (-)-isopiperitenone (3). A chemical reduction and separation route from (3) provides both native (-)- trans-isopiperitenol (2) and isomer (-)- cis-isopiperitenol (18), while enzymatic conjugate reduction of (-)-isopiperitenone (3) with IPR [(-)-isopiperitenone reductase)] provides (+)- cis-isopulegone (4).

View Article and Find Full Text PDF

The realization of a synthetic biology approach to microbial (1,2,5)-()-menthol () production relies on the identification of a gene encoding an isopulegone isomerase (IPGI), the only enzyme in the biosynthetic pathway as yet unidentified. We demonstrate that Δ5-3-ketosteroid isomerase (KSI) from can act as an IPGI, producing ()-(+)-pulegone (()-) from (+)--isopulegone (). Using a robotics-driven semirational design strategy, we identified a key KSI variant encoding four active site mutations, which confer a 4.

View Article and Find Full Text PDF

Terpenoids form the largest and stereochemically most diverse class of natural products, and there is considerable interest in producing these by biocatalysis with whole cells or purified enzymes, and by metabolic engineering. The monoterpenes are an important class of terpenes and are industrially important as flavors and fragrances. We report here structures for the recently discovered monoterpene synthases linalool synthase (bLinS) and 1,8-cineole synthase (bCinS), and we show that these are active biocatalysts for monoterpene production using biocatalysis and metabolic engineering platforms.

View Article and Find Full Text PDF

Proper helmet fit is important for optimizing head protection during an impact, yet many motorcyclists wear helmets that do not properly fit their heads. The goals of this study are i) to quantify how a mismatch in headform size and motorcycle helmet size affects headform peak acceleration and head injury criteria (HIC), and ii) to determine if peak acceleration, HIC, and impact speed can be estimated from the foam liner's maximum residual crush depth or residual crush volume. Shorty-style helmets (4 sizes of a single model) were tested on instrumented headforms (4 sizes) during linear impacts between 2.

View Article and Find Full Text PDF

The fungus Corynespora cassiicola metabolises exogenous steroids in a unique and highly specific manner. Central to this, is the ability of this organism to functionalise substrates (androgens, progestogens) at the highly stereochemically hindered 8β-position of the steroid nucleus. A recent study has identified that 8β-hydroxylation occurs through inverted binding in a 9α-hydroxylase.

View Article and Find Full Text PDF

Protochlorophyllide (Pchlide), an intermediate in the biosynthesis of chlorophyll, is the substrate for the light-driven enzyme protochlorophyllide oxidoreductase. Pchlide has excited-state properties that allow it to initiate photochemistry in the enzyme active site, which involves reduction of Pchlide by sequential hydride and proton transfer. The basis of this photochemical behavior has been investigated here using a combination of time-resolved spectroscopies and density functional theory calculations of a number of Pchlide analogues with modifications to various substituent groups.

View Article and Find Full Text PDF

Two new series of pyrazolobenzothiazine-based carbothioamides ( and ) were synthesized using saccharin as the starting material. The synthesized derivatives were investigated for their ability to inhibit monoamine oxidases (MAO). Compound was found to be a very potent MAO-A inhibitor with an IC value of 0.

View Article and Find Full Text PDF

The first single-molecule fluorescence detection of a structurally-defined synthetic carbohydrate is reported: a heparan sulfate (HS) disaccharide fragment labeled with Alexa488. Single molecules have been measured whilst freely diffusing in solution and controlled encapsulation in surface-tethered lipid vesicles has allowed extended observations of carbohydrate molecules down to the single-molecule level. The diverse and dynamic nature of HS-protein interactions means that new tools to investigate pure HS fragments at the molecular level would significantly enhance our understanding of HS.

View Article and Find Full Text PDF

Three enzymes of the essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (-)-menthone:(-)-menthol reductase and (-)-menthone:(+)-neomenthol reductase, and the "ene" reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue-swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction.

View Article and Find Full Text PDF

Heparan sulphate (HS), a ubiquitously expressed glycosaminoglycan (GAG), regulates multiple cellular functions by mediating interactions between numerous growth factors and their cell surface cognate receptors. However, the structural specificity of HS in these interactions remains largely undefined. Here, we used completely synthetic, structurally defined, alternating N-sulfated glucosamine (NS) and 2-O-sulfated iduronate (IS) residues to generate dodecasaccharides ([NSIS]6) that contained no, one or six glucosamine 6-O-sulfates (6S).

View Article and Find Full Text PDF

Three enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (-)-menthone:(-)-menthol reductase and (-)-menthone:(+)-neomenthol reductase, and the "ene" reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue-swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction.

View Article and Find Full Text PDF

Bicycle helmets reduce the frequency and severity of severe to fatal head and brain injuries in bicycle crashes. Our goal here was to measure the impact attenuation performance of common bicycle helmets over a range of impact speeds. We performed 127 drop tests using 13 different bicycle helmet models (6 traditional style helmets and 7 BMX-style helmets) at impact speeds ranging from 1 to 10m/s onto a flat anvil.

View Article and Find Full Text PDF