Publications by authors named "John G Wise"

Overexpression of the polyspecific efflux transporter, P-glycoprotein (P-gp, MDR1, ), is a major mechanism by which cancer cells acquire multidrug resistance (MDR), the resistance to diverse chemotherapeutic drugs. Inhibiting drug transport by P-gp can resensitize cancer cells to chemotherapy, but there are no P-gp inhibitors available to patients. Clinically unsuccessful P-gp inhibitors tend to bind at the pump's transmembrane drug binding domains and are often P-gp transport substrates, resulting in lowered intracellular concentration of the drug and altered pharmacokinetics.

View Article and Find Full Text PDF

The MtrCDE system confers multidrug resistance to , the causative agent of gonorrhea. Using free and directed molecular dynamics (MD) simulations, we analyzed the interactions between MtrD and azithromycin, a transport substrate of MtrD, and a last-resort clinical treatment for multidrug-resistant gonorrhea. We then simulated the interactions between MtrD and streptomycin, an apparent nonsubstrate of MtrD.

View Article and Find Full Text PDF

P-glycoprotein (P-gp) is a critical membrane transporter in the blood brain barrier (BBB) and is implicated in Alzheimer's disease (AD). However, previous studies on the ability of P-gp to directly transport the Alzheimer's associated amyloid-β (Aβ) protein have produced contradictory results. Here we use molecular dynamics (MD) simulations, transport substrate accumulation studies in cell culture, and biochemical activity assays to show that P-gp actively transports Aβ.

View Article and Find Full Text PDF

Overexpression of ABC transporters like P-glycoprotein (P-gp) has been correlated with resistances in cancer chemotherapy. Intensive efforts to identify P-gp inhibitors for use in combination therapy have not led to clinically approved inhibitors to date. Here, we describe computational approaches combined with structure-based design to improve the characteristics of a P-gp inhibitor previously identified by us.

View Article and Find Full Text PDF

One common reason for cancer chemotherapy failure is increased drug efflux catalyzed by membrane transporters with broad pump substrate specificities, which leads to resistances to a wide range of chemically unrelated drugs. This multidrug resistance (MDR) phenomenon results in failed therapies and poor patient prognoses. A common cause of MDR is over-expression of the P-glycoprotein (ABCB1/P-gp) transporter.

View Article and Find Full Text PDF

Receptor-independent cellular uptake of small molecule therapeutics is limited by their physical interaction with the negatively charged surface of cellular membranes. Passive diffusion through the hydrophobic membrane bilayer follows this process. Unless specific carriers exist in the biological membrane, such interactions limit therapeutics to those that are hydrophobic with modest positive charge at physiological pH.

View Article and Find Full Text PDF

Overexpression of ATP-binding cassette (ABC) transporters is often linked to multidrug resistance (MDR) in cancer chemotherapies. P-glycoprotein (P-gp) is one of the best studied drug transporters associated with MDR. There are currently no approved drugs available for clinical use in cancer chemotherapies to reverse MDR by inhibiting P-glycoprotein.

View Article and Find Full Text PDF

Failure of cancer chemotherapies is often linked to the over expression of ABC efflux transporters like the multidrug resistance P-glycoprotein (P-gp). P-gp expression in cells leads to the elimination of a variety of chemically unrelated, mostly cytotoxic compounds. Administration of chemotherapeutics during therapy frequently selects for cells that over express P-gp and are therefore capable of robustly exporting diverse compounds, including chemotherapeutics, from the cells.

View Article and Find Full Text PDF

P-Glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance.

View Article and Find Full Text PDF

Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell.

View Article and Find Full Text PDF

Multidrug resistance proteins that belong to the ATP-binding cassette family like the human P-glycoprotein (ABCB1 or Pgp) are responsible for many failed cancer and antiviral chemotherapies because these membrane transporters remove the chemotherapeutics from the targeted cells. Understanding the details of the catalytic mechanism of Pgp is therefore critical to the development of inhibitors that might overcome these resistances. In this work, targeted molecular dynamics techniques were used to elucidate catalytically relevant structures of Pgp.

View Article and Find Full Text PDF

ATP synthases from coupling membranes are complex rotary motors that convert the energy of proton gradients across coupling membranes into the chemical potential of the beta-gamma anhydride bond of ATP. Proton movement within the ring of c subunits localized in the F(0)-sector drives gamma and epsilon rotation within the F(1)alpha(3)beta(3) catalytic core where substrates are bound and products are released. An external stalk composed of homodimeric subunits b(2) in Escherichia coli or heterodimeric bb' in photosynthetic synthases connects F(0) subunit a with F(1) subunits delta and most likely alpha.

View Article and Find Full Text PDF

The structure and functional role of the dimeric external stalk of F(o)F(1)-ATP synthases have been very actively researched over the last years. To understand the function, detailed knowledge of the structure and protein packing interactions in the dimer is required. In this paper we describe the application of structural prediction and molecular modeling approaches to elucidate the structural packing interaction of the cyanobacterial ATP synthase external stalk.

View Article and Find Full Text PDF

Conformational changes within the subunit b-dimer of the E. coli ATP synthase occur upon binding to the F(1) sector. ESR spectra of spin-labeled b at room temperature indicated a pivotal point in the b-structure at residue 62.

View Article and Find Full Text PDF

One remaining challenge to our understanding of the ATP synthase concerns the dimeric coiled-coil stator subunit b of bacterial synthases. The subunit b-dimer has been implicated in important protein interactions that appear necessary for energy conservation and that may be instrumental in energy conservation during rotary catalysis by the synthase. Understanding the stator structure and its interactions with the rest of the enzyme is crucial to the understanding of the overall catalytic mechanism.

View Article and Find Full Text PDF

The structure of the external stalk and its function in the catalytic mechanism of the F(0)F(1)-ATP synthase remains one of the important questions in bioenergetics. The external stalk has been proposed to be either a rigid stator that binds F(1) or an elastic structural element that transmits energy from the small rotational steps of subunits c to the F(1) sector during catalysis. We employed proteomics, sequence-based structure prediction, molecular modeling, and electron spin resonance spectroscopy using site-directed spin labeling to understand the structure and interfacial packing of the Escherichia coli b-subunit homodimer external stalk.

View Article and Find Full Text PDF

An open reading frame of gelonin (Gel), one of ribosome inactivating proteins, was inserted into the vector pBSL-C which contains the coding region of chitin binding domain (CBD)-intein, resulting in the fusion expression of CBD-intein-Gel in Escherichia coli BL21 (DE3) by the induction of IPTG. The fusion product formed an aggregate of the misfolded protein, commonly referred to as inclusion bodies (IBs). The IBs were denatured and then refolded by step-wise dialysis.

View Article and Find Full Text PDF

We have used site-specific spin-labeling of single cysteine mutations within a water-soluble mutant of subunit b of the ATP synthase and employed electron spin resonance (ESR) spectroscopy to obtain information about the binding interactions of the b dimer with F1-ATPase. Interaction of b2 with a delta-depleted F1 (F1-delta) was also studied. The cysteine mutations used for spin-labeling were distributed throughout the cytosolic domain of the b subunit.

View Article and Find Full Text PDF

Redesign of the bacteriophage 434 Cro repressor was accomplished by using an in vivo genetic screening system to identify new variants that specifically bound previously unrecognized DNA sequences. Site-directed, combinatorial mutagenesis of the 434 Cro helix-turn-helix (HTH) motif generated libraries of new variants which were screened for binding to new target sequences. Multiple mutations of 434 Cro that functionally converted wild-type (wt) 434 Cro DNA binding-sequence specificity to that of a lambda bacteriophage-specific repressor were identified.

View Article and Find Full Text PDF

The mechanism of assisted protein folding by the chaperonin GroEL alone or in complex with the co-chaperonin GroES and in the presence or absence of nucleotides has been subject to extensive investigations during the last years. In this paper we present data where we have inactivated GroEL by stepwise blocking the nucleotide binding sites using the non-hydrolyzable ATP analogue, (Cr(H2O)4)3+ATP. We correlated the amount of accessible nucleotide binding sites with the residual ATP hydrolysis activity of GroEL as well as the residual refolding activity for two different model substrates.

View Article and Find Full Text PDF