Repeated head impact exposure can cause memory and behavioral impairments. Here, we report that exposure to non-damaging, but high frequency, head impacts can alter brain function in mice through synaptic adaptation. High frequency head impact mice develop chronic cognitive impairments in the absence of traditional brain trauma pathology, and transcriptomic profiling of mouse and human chronic traumatic encephalopathy brain reveal that synapses are strongly affected by head impact.
View Article and Find Full Text PDFCorticotrophin Releasing Factor (CRF) is a critical stress-related neuropeptide in major output pathways of the amygdala, including the central nucleus (CeA), and in a key projection target of the CeA, the bed nucleus of the stria terminalis (BnST). While progress has been made in understanding the contributions and characteristics of CRF as a neuropeptide in rodent behavior, little attention has been committed to determine the properties and synaptic physiology of specific populations of CRF-expressing (CRF(+)) and non-expressing (CRF(-)) neurons in the CeA and BnST. Here, we fill this gap by electrophysiologically characterizing distinct neuronal subtypes in CeA and BnST.
View Article and Find Full Text PDFHebbian, or associative, forms of synaptic plasticity are considered the molecular basis of learning and memory. However, associative synaptic modifications, including long-term potentiation (LTP) and depression (LTD), can form positive feedback loops which must be constrained for neural networks to remain stable. One proposed constraint mechanism is metaplasticity, a process whereby synaptic changes shift the threshold for subsequent plasticity.
View Article and Find Full Text PDFFront Pharmacol
March 2015
The family of GCaMPs are engineered proteins that contain Ca(2+) binding motifs within a circularly permutated variant of the Aequorea Victoria green fluorescent protein (cp-GFP). The rapidly advancing field of utilizing GCaMP reporter constructs represents a major step forward in our ability to monitor intracellular Ca(2+) dynamics. With the use of these genetically encoded Ca(2+) sensors, investigators have studied activation of endogenous Gq types of G protein-coupled receptors (GPCRs) and subsequent rises in intracellular calcium.
View Article and Find Full Text PDFIn mouse striatum, metabotropic glutamate receptor (mGluR) activation leads to several modulatory effects in synaptic transmission. These effects range from dampening of glutamate release from excitatory terminals to depolarization of divergent classes of interneurones. We compared the action of group I mGluR activation on several populations of striatal neurones using a combination of genetic identification, electrophysiology, and Ca(2+) imaging techniques.
View Article and Find Full Text PDFFront Neural Circuits
April 2014
Striatonigral and striatopallidal projecting medium spiny neurons (MSNs) express dopamine D1 (D1+) and D2 receptors (D2+), respectively. Both classes receive extensive GABAergic input via expression of synaptic, perisynaptic, and extrasynaptic GABAA receptors. The activation patterns of different presynaptic GABAergic neurons produce transient and sustained GABAA receptor-mediated conductance that fulfill distinct physiological roles.
View Article and Find Full Text PDFThe principle neurons of the striatum are GABAergic medium spiny neurons (MSNs), whose collateral synapses onto neighboring neurons play critical roles in striatal function. MSNs can be divided by dopamine receptor expression into D1-class and D2-class MSNs, and alterations in D2 MSNs are associated with various pathological states. Despite overwhelming evidence for D2 receptors (D2Rs) in maintaining proper striatal function, it remains unclear how MSN collaterals are specifically altered by D2R activation.
View Article and Find Full Text PDFDendritic spines undergo the processes of formation, maturation, and pruning during development. Molecular mechanisms controlling spine maturation and pruning remain largely unknown. The gene for brain-derived neurotrophic factor (BDNF) produces two pools of mRNA, with either a short or long 3' untranslated region (3' UTR).
View Article and Find Full Text PDFCholine acetyltransferase-expressing interneurones (ChAT)(+) of the striatum influence the activity of medium spiny projecting neurones (MSNs) and striatal output via a disynaptic mechanism that involves GABAergic neurotransmission. Using transgenic mice that allow visual identification of MSNs and distinct populations of GABAergic interneurones expressing neuropeptide Y (NPY)(+), parvalbumin (PV)(+) and tyrosine hydroxylase (TH)(+), we further elucidate this mechanism by studying nicotinic ACh receptor (nAChR)-mediated responses. First, we determined whether striatal neurones exhibit pharmacologically induced nicotinic responses by performing patch-clamp recordings.
View Article and Find Full Text PDFAlthough rare, interneurons are pivotal in governing striatal output by extensive axonal arborizations synapsing on medium spiny neurons. Using a genetically modified mouse strain in which a green fluorescent protein (GFP) is driven to be expressed under control of the neuropeptide Y (NPY) promoter, we identified NPY interneurons and compared them with striatal principal neurons. We found that the bacteria artificial chromosome (BAC)-npy mouse expresses GFP with high fidelity in the striatum to the endogenous expression of NPY.
View Article and Find Full Text PDFExcitatory postsynaptic currents (EPSCs) from dorsolateral medium spiny neurons (MSNs) were recorded in cortico-striatal slice preparations from postnatal day 6-8 (P6-8) and >P12 wild-type mice and mice that were lacking either the NR2A or the NR2C subunit of the N-methyl-D-aspartate (NMDA) receptor. EPSCs were elicited by stimulation of the excitatory afferents and the NMDA and non-NMDA receptor-mediated components were pharmacologically isolated. The ratio of these components decreased with development and was significantly reduced only between age-matched +/+ and NR2A -/- neurons.
View Article and Find Full Text PDFPhosducin (PDC) has been shown in structural and biochemical experiments to bind the Gbetagamma subunit of heterotrimeric G-proteins. A proposed function of PDC and phosducin-like protein (PDCL) is the sequestration of "free" Gbetagamma from the plasma membrane, thereby terminating signaling by Gbetagamma. The functional impact of heterologously expressed PDC and PDCL on N-type calcium channel (CaV2.
View Article and Find Full Text PDFLong-lasting alterations in the efficacy of glutamatergic synapses, such as long-term potentiation (LTP) and long-term depression (LTD), are prominent models for mechanisms of information storage in the brain. It has been suggested that exposure to drugs of abuse produces synaptic plasticity at glutamatergic synapses that shares many features with LTP and LTD, and that these synaptic changes may play roles in addiction. We have examined the involvement of particular neurotransmitters in synaptic plasticity at glutamatergic synapses within the striatum, a brain region with prominent roles in initiation and sequencing of actions, as well as habit formation.
View Article and Find Full Text PDFDrug addiction can take control of the brain and behavior, activating behavioral patterns that are directed excessively and compulsively toward drug usage. Such patterns often involve the development of repetitive and nearly automatic behaviors that we call habits. The striatum, a subcortical brain region important for proper motor function as well as for the formation of behavioral habits, is a major target for drugs of abuse.
View Article and Find Full Text PDFThe dorsal striatum participates in motor function and stimulus-response or "habit" learning. Acetylcholine (ACh) is a prominent neurotransmitter in the striatum and exerts part of its actions through nicotinic cholinergic receptors. Activation of these receptors has been associated with the enhancement of learning and certainly is instrumental in habitual use of nicotine.
View Article and Find Full Text PDF