Publications by authors named "John G Pagiazitis"

Development and maintenance of posture is essential behavior for overground mammalian locomotion. Dopamine and noradrenaline strongly influence locomotion, and their dysregulation initiates the development of motor impairments linked to neurodegenerative disease. However, the precise cellular and circuit mechanisms are not well defined.

View Article and Find Full Text PDF

Movement is executed through the balanced action of excitatory and inhibitory neurotransmission in motor circuits of the spinal cord. Short-term perturbations in one of the two types of transmission are counteracted by homeostatic changes of the opposing type. Prolonged failure to balance excitatory and inhibitory drive results in dysfunction at the single neuron, as well as neuronal network levels.

View Article and Find Full Text PDF

Neuromodulation by serotonin regulates the activity of neuronal networks responsible for a wide variety of essential behaviours. Serotonin (or 5-HT) typically activates metabotropic G protein-coupled receptors, which in turn initiate second messenger signalling cascades and induce short and long-lasting behavioural effects. Serotonin is intricately involved in the production of locomotor activity and gait control for different motor behaviours.

View Article and Find Full Text PDF

Locomotion is a complex behavior required for animal survival. Vertebrate locomotion depends on spinal interneurons termed the central pattern generator (CPG), which generates activity responsible for the alternation of flexor and extensor muscles and the left and right side of the body. It is unknown whether multiple or a single neuronal type is responsible for the control of mammalian locomotion.

View Article and Find Full Text PDF

Dysfunction of neuronal circuits is an important determinant of neurodegenerative diseases. Synaptic dysfunction, death, and intrinsic activity of neurons are thought to contribute to the demise of normal behavior in the disease state. However, the interplay between these major pathogenic events during disease progression is poorly understood.

View Article and Find Full Text PDF

Movement is an essential behavior requiring the assembly and refinement of spinal motor circuits. However, the mechanisms responsible for circuit refinement and synapse maintenance are poorly understood. Similarly, the molecular mechanisms by which gene mutations cause dysfunction and elimination of synapses in neurodegenerative diseases that occur during development are unknown.

View Article and Find Full Text PDF

The hallmark of spinal muscular atrophy (SMA), an inherited disease caused by ubiquitous deficiency in the SMN protein, is the selective degeneration of subsets of spinal motor neurons. Here, we show that cell-autonomous activation of p53 occurs in vulnerable but not resistant motor neurons of SMA mice at pre-symptomatic stages. Moreover, pharmacological or genetic inhibition of p53 prevents motor neuron death, demonstrating that induction of p53 signaling drives neurodegeneration.

View Article and Find Full Text PDF

Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments.

View Article and Find Full Text PDF

Circuit function in the CNS relies on the balanced interplay of excitatory and inhibitory synaptic signaling. How neuronal activity influences synaptic differentiation to maintain such balance remains unclear. In the mouse spinal cord, a population of GABAergic interneurons, GABApre, forms synapses with the terminals of proprioceptive sensory neurons and controls information transfer at sensory-motor connections through presynaptic inhibition.

View Article and Find Full Text PDF

Ceramides (CER) are involved in alcohol-induced neuroinflammation. In a mouse model of chronic alcohol exposure, 16 CER and 18 sphingomyelin (SM) concentrations from whole brain lipid extracts were measured using electrospray mass spectrometry. All 18 CER concentrations in alcohol exposed adults increased significantly (range: 25-607%); in juveniles, 6 CER decreased (range: -9 to -37%).

View Article and Find Full Text PDF