Publications by authors named "John G Mikhael"

The role of dopamine (DA) as a reward prediction error (RPE) signal in reinforcement learning (RL) tasks has been well-established over the past decades. Recent work has shown that the RPE interpretation can also account for the effects of DA on interval timing by controlling the speed of subjective time. According to this theory, the timing of the dopamine signal relative to reward delivery dictates whether subjective time speeds up or slows down: Early DA signals speed up subjective time and late signals slow it down.

View Article and Find Full Text PDF

Reinforcement learning models of the basal ganglia map the phasic dopamine signal to reward prediction errors (RPEs). Conventional models assert that, when a stimulus predicts a reward with fixed delay, dopamine activity during the delay should converge to baseline through learning. However, recent studies have found that dopamine ramps up before reward in certain conditions even after learning, thus challenging the conventional models.

View Article and Find Full Text PDF

Bayesian models successfully account for several of dopamine (DA)'s effects on contextual calibration in interval timing and reward estimation. In these models, tonic levels of DA control the precision of stimulus encoding, which is weighed against contextual information when making decisions. When DA levels are high, the animal relies more heavily on the (highly precise) stimulus encoding, whereas when DA levels are low, the context affects decisions more strongly.

View Article and Find Full Text PDF

Slow-timescale (tonic) changes in dopamine (DA) contribute to a wide variety of processes in reinforcement learning, interval timing, and other domains. Furthermore, changes in tonic DA exert distinct effects depending on when they occur (e.g.

View Article and Find Full Text PDF

Rapid phasic activity of midbrain dopamine neurons is thought to signal reward prediction errors (RPEs), resembling temporal difference errors used in machine learning. However, recent studies describing slowly increasing dopamine signals have instead proposed that they represent state values and arise independent from somatic spiking activity. Here we developed experimental paradigms using virtual reality that disambiguate RPEs from values.

View Article and Find Full Text PDF

The modulation of interval timing by dopamine (DA) has been well established over decades of research. The nature of this modulation, however, has remained controversial: Although the pharmacological evidence has largely suggested that time intervals are overestimated with higher DA levels, more recent optogenetic work has shown the opposite effect. In addition, a large body of work has asserted DA's role as a "reward prediction error" (RPE), or a teaching signal that allows the basal ganglia to learn to predict future rewards in reinforcement learning tasks.

View Article and Find Full Text PDF

Learning the reliability of different sources of rewards is critical for making optimal choices. However, despite the existence of detailed theory describing how the expected reward is learned in the basal ganglia, it is not known how reward uncertainty is estimated in these circuits. This paper presents a class of models that encode both the mean reward and the spread of the rewards, the former in the difference between the synaptic weights of D1 and D2 neurons, and the latter in their sum.

View Article and Find Full Text PDF

To engage with the world-to understand the scene in front of us, plan actions, and predict what will happen next-we must have an intuitive grasp of the world's physical structure and dynamics. How do the objects in front of us rest on and support each other, how much force would be required to move them, and how will they behave when they fall, roll, or collide? Despite the centrality of physical inferences in daily life, little is known about the brain mechanisms recruited to interpret the physical structure of a scene and predict how physical events will unfold. Here, in a series of fMRI experiments, we identified a set of cortical regions that are selectively engaged when people watch and predict the unfolding of physical events-a "physics engine" in the brain.

View Article and Find Full Text PDF