J Comput Aided Mol Des
July 2024
Nonadditivity (NA) in Structure-Activity and Structure-Property Relationship (SAR) data is a rare but very information rich phenomenon. It can indicate conformational flexibility, structural rearrangements, and errors in assay results and structural assignment. While purely ligand-based conformational causes of NA are rather well understood and mundane, other factors are less so and cause surprising NA that has a huge influence on SAR analysis and ML model performance.
View Article and Find Full Text PDFNovel bacterial topoisomerase inhibitors (NBTIs) make up a promising new class of antibiotics with the potential to combat the growing threat of antimicrobial resistance. Two key challenges in the development of NBTIs have been to obtain broad spectrum activity against multidrug-resistant Gram-negative bacteria and to diminish inhibition of the hERG cardiac ion channel. Here we report the optimization of a series of NBTIs bearing a novel indane DNA intercalating moiety.
View Article and Find Full Text PDFThe rise of multidrug-resistant (MDR) Gram-negative bacteria is a major global health problem necessitating the discovery of new classes of antibiotics. Novel bacterial topoisomerase inhibitors (NBTIs) target the clinically validated bacterial type II topoisomerases with a distinct binding site and mechanism of action to fluoroquinolone antibiotics, thus avoiding cross-resistance to this drug class. Here we report the discovery of a series of NBTIs incorporating a novel indane DNA binding moiety.
View Article and Find Full Text PDFTwo structurally distinct series of novel, MAPK-activated kinase-2 prevention of activation inhibitors have been discovered by high throughput screening. Preliminary structure-activity relationship (SAR) studies revealed substructural features that influence the selective inhibition of the activation by p38α of the downstream kinase MK2 in preference to an alternative substrate, MSK1. Enzyme kinetics, surface plasmon resonance (SPR), 2D protein NMR, and X-ray crystallography were used to determine the binding mode and the molecular mechanism of action.
View Article and Find Full Text PDFIn a recent study, we presented a novel quantitative-structure-activity-relationship (QSAR) approach, combining R-group signatures and nonlinear support-vector-machines (SVM), to build interpretable local models for congeneric compound sets. Here, we outline further refinements in the fingerprint scheme for the purpose of analyzing and visualizing structure-activity relationships (SAR). The concept of distance encoded R-group signature descriptors is introduced, and we explore the influence of different signature encoding schemes on both interpretability and predictive power of the SVM models using ten public data sets.
View Article and Find Full Text PDFThe productivity challenge facing the pharmaceutical industry is well documented. Strategies to improve productivity have mainly focused on enhancing efficiency, such as the application of Lean Six Sigma process improvement methods and the introduction of modeling and simulation in place of 'wet' experiments. While these strategies have their benefits, the real challenge is to improve effectiveness by reducing clinical failure rates.
View Article and Find Full Text PDFThe 'quality' of small-molecule drug candidates, encompassing aspects including their potency, selectivity and ADMET (absorption, distribution, metabolism, excretion and toxicity) characteristics, is a key factor influencing the chances of success in clinical trials. Importantly, such characteristics are under the control of chemists during the identification and optimization of lead compounds. Here, we discuss the application of computational methods, particularly quantitative structure-activity relationships (QSARs), in guiding the selection of higher-quality drug candidates, as well as cultural factors that may have affected their use and impact.
View Article and Find Full Text PDFA novel, potent and selective quinazolinone series of inhibitors of p38α MAP kinase has been identified. Modifications designed to address the issues of poor aqueous solubility and high plasma protein binding as well as embedded aniline functionalities resulted in the identification of a clinical candidate N-cyclopropyl-4-methyl-3-[6-(4-methylpiperazin-1-yl)-4-oxoquinazolin-3(4H)-yl]benzamide (AZD6703). Optimisation was guided by understanding of the binding modes from X-ray crystallographic studies which showed a switch from DFG 'out' to DFG 'in' as the inhibitor size was reduced to improve overall properties.
View Article and Find Full Text PDFA novel N-aryl piperazine-1-carboxamide series of human CCR2 chemokine receptor antagonists was discovered. Early analogues were potent at CCR2 but also inhibited the hERG cardiac ion channel. Structural modifications which decreased lipophilicity and basicity resulted in the identification of a sub-series with an improved margin over hERG.
View Article and Find Full Text PDFDrug Discov Today
September 2012
Today's drug designer has access to vast quantities of data and an impressive array of sophisticated computational methods. At the same time, there is increasing pressure on the pharmaceutical industry to improve its productivity and reduce candidate drug attrition. We set out to develop a highly integrated suite of design and data analysis tools underpinned by the best predictive chemistry methods and models, with the aim of enabling multi-disciplinary compound design teams to make better informed design decisions.
View Article and Find Full Text PDFModifications to a series of potent and selective substituted 1-(3,3-diphenylpropyl)-piperidine phenylacetamide CCR5 antagonists were explored with the aim of reducing affinity at the hERG cardiac ion channel. Replacement of one aromatic ring in the diphenylpropyl region with less lipophilic, saturated heterocyclic rings and subsequent optimisation of the other phenyl ring led to the identification of clinical compound AZD5672 which retained excellent potency while reducing hERG affinity. Modulating lipophilicity affected the interplay between potency, hERG affinity and absorption.
View Article and Find Full Text PDFWe present an automated QSAR procedure that is used in AstraZeneca's AutoQSAR system. The approach involves automatically selecting the most predictive models from pools of both global and local models. The effectiveness of this QSAR modelling strategy is demonstrated with a retrospective study that uses a diverse selection of 9 early stage AstraZeneca drug discovery projects and 3 physicochemical endpoints: LogD; solubility and human plasma protein binding.
View Article and Find Full Text PDFA new achiral class of N-hydroxyformamide inhibitor of both ADAM-TS4 and ADAM-TS5, 2 has been discovered through modification of the complex P1 group present in historical inhibitors 1. This structural change improved the DMPK properties and greatly simplified the synthesis whilst maintaining excellent cross-MMP selectivity profiles. Investigation of structure-activity and structure-property relationships in the P1 group resulted in both ADAM-TS4 selective and mixed ADAM-TS4/5 inhibitors.
View Article and Find Full Text PDFTwo series of N-hydroxyformamide inhibitors of ADAM-TS4 were identified from screening compounds previously synthesised as inhibitors of matrix metalloproteinase-13 (collagenase-3). Understanding of the binding mode of this class of compound using ADAM-TS1 as a structural surrogate has led to the discovery of potent and very selective inhibitors with favourable DMPK properties. Synthesis, structure-activity relationships, and strategies to improve selectivity and lower in vivo metabolic clearance are described.
View Article and Find Full Text PDFSAR and PK studies led to the identification of N-(1-{(3R)-3-(3,5-difluorophenyl)-3-[4-methanesulfonylphenyl] propyl}piperidin-4-yl)-N-ethyl-2-[4-methanesulfonylphenyl]acetamide as a highly potent and selective ligand for the human CCR5 chemokine receptor with good oral pharmacokinetic properties.
View Article and Find Full Text PDFSAR and DMPK studies led to the identification of substituted N-alkyl-N-[1-(3,3-diphenylpropyl)piperidin-4-yl]-2-phenylacetamides as potent and orally bioavailable ligands for the human CCR5 chemokine receptor.
View Article and Find Full Text PDFThe condensation of substituted allylsiloxanes with aldehydes leads to the highly stereoselective construction of 2,3,4,5-tetrasubstituted tetrahydrofurans. With electron-rich aryl and alpha,beta-unsaturated aldehydes as substrates, the stereochemical outcome at C5 can be dictated by appropriate choice of Lewis acid. The reaction has been applied to a concise (nine step) synthesis of (+)-virgatusin (ent-1).
View Article and Find Full Text PDFInvestigation of weak screening hits led to the identification of N-alkyl-N-[1-(3,3-diphenylpropyl)piperidin-4-yl]-2-phenylacetamides and N-alkyl-N-[1-(3,3-diphenylpropyl)piperidin-4-yl]-N'-benzylureas as potent, selective ligands for the human CCR5 chemokine receptor.
View Article and Find Full Text PDFSAR studies led to the identification of 4-(3-benzoylamino-6-methyl-anilino)quinazolines as potent and selective inhibitors of p38 MAP kinase. Further optimisation led to the identification of a series of 4-(3-benzoylamino-6-methyl-anilino)pyrimidines as potent inhibitors of the p38 MAP kinase signalling pathway in vitro and in vivo.
View Article and Find Full Text PDF