We describe the preclinical development and in vivo efficacy of a novel chemical series that inhibits hepatitis C virus replication via direct interaction with the viral nonstructural protein 4B (NS4B). Significant potency improvements were realized through isosteric modifications to our initial lead 1a. The temptation to improve antiviral activity while compromising physicochemical properties was tempered by the judicial use of ligand efficiency indices during lead optimization.
View Article and Find Full Text PDFStereorandom and diastereoselective syntheses of a novel 1,2,3,4,4a,5,6,10b-octahydro-1,10-phenanthroline ring system are described. Derivatives of all four diastereomers were prepared and isolated in >98% ee. The pure enantiomers were compared in order to determine the preferred absolute and relative configuration required for optimal anti-HIV activity.
View Article and Find Full Text PDFSynthesis of several novel imidazopyridine-5,6,7,8-tetrahydro-8-quinolinamine derivatives with potent activity against HIV are described. Synthetic approaches allowing for variation of the substitution pattern are outlined and resulting changes in antiviral activity and pharmacokinetics are highlighted. Several compounds with low nanomolar anti-HIV activity and oral bioavailability are described.
View Article and Find Full Text PDFThe synthesis and SAR of a series of substituted 1-aminotetrahydrocarbazoles with potent activity against human papillomaviruses are described. Synthetic approaches allowing for variation of the substitution pattern of the tetrahydrocarbazole are outlined and resulting changes in antiviral activity are highlighted. Several compounds with in vitro antiviral activity (W12 antiviral assay) in the low nanomolar range were identified and (1R)-6-bromo-N-[(1R)-1-phenylethyl]-2,3,4,9-tetrahydro-1H-carbazole-1-amine was selected for further evaluation.
View Article and Find Full Text PDFStarting from a potent ketone-based inhibitor with poor drug properties, incorporation of P(2)-P(3) elements from a ketoamide-based inhibitor led to the identification of a hybrid series of ketone-based cathepsin K inhibitors with better oral bioavailability than the starting ketone.
View Article and Find Full Text PDFStarting from a potent pantolactone ketoamide cathepsin K inhibitor discovered from structural screening, conversion of the lactone scaffold to a pyrrolidine scaffold allowed exploration of the S(3) subsite of cathepsin K. Manipulation of P3 and P1' groups afforded potent inhibitors with drug-like properties.
View Article and Find Full Text PDFAn orally bioavailable series of ketoamide-based cathepsin K inhibitors with good pharmacokinetic properties has been identified. Starting from a potent inhibitor endowed with poor drug properties, conformational constraint of the P(2)-P(3) linker and modifications to P(1') elements led to an enhancement in potency, solubility, clearance, and bioavailability. These optimized inhibitors attenuated bone resorption in a rat TPTX hypocalcemic bone resorption model.
View Article and Find Full Text PDFSeveral novel ketoamide-based inhibitors of cathepsin K have been identified. Starting from a modestly potent inhibitor, structural screening of P2 elements led to 100-fold enhancements in inhibitory activity. Modifications to one of these leads resulted in an orally bioavailable cathepsin K inhibitor.
View Article and Find Full Text PDFA series of ketoamides were synthesized and evaluated for inhibitory activity against cathepsin K. Exploration of the interactions between achiral P(2) substituents and the cysteine protease based on molecular modelling suggestions resulted in potent cathepsin K inhibitors that demonstrated high selectivity versus cathepsins B, H, and L. Subsequent modifications of the P(3), P(1), and P(1') moieties afforded orally bioavailable inhibitors.
View Article and Find Full Text PDFAn orally available series of ketoamide-based inhibitors of cathepsin K has been identified. Starting from a potent inhibitor with poor oral bioavailability, modifications to P1 and P1' elements led to enhancements in solubility and permeability. These improvements resulted in orally available cathepsin K inhibitors.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2004
A novel series of ketoamide-based inhibitors of cathepsin K has been identified. Modifications to P(2) and P(3) elements were crucial to enhancing inhibitory activity. Although not optimized, a selected inhibitor was effective in attenuating type I collagen hydrolysis in a surrogate assay of bone resorption.
View Article and Find Full Text PDFThe synthesis and biological activity of a series of aldehyde inhibitors of cathepsin K are reported. Exploration of the properties of the S(1) subsite with a series of alpha-amino aldehyde derivatives substituted at the P(1) position afforded compounds with cathepsin K IC(50)s between 52 microM and 15 nM.
View Article and Find Full Text PDF