Optical quantum networks can connect distant quantum processors to enable secure quantum communication and distributed quantum computing. Superconducting qubits are a leading technology for quantum information processing but cannot couple to long-distance optical networks without an efficient, coherent, and low noise interface between microwave and optical photons. Here, we demonstrate a microwave-to-optical transducer using an ensemble of erbium ions that is simultaneously coupled to a superconducting microwave resonator and a nanophotonic optical resonator.
View Article and Find Full Text PDFOptical networks that distribute entanglement among various quantum systems will form a powerful framework for quantum science but are yet to interface with leading quantum hardware such as superconducting qubits. Consequently, these systems remain isolated because microwave links at room temperature are noisy and lossy. Building long distance connectivity requires interfaces that map quantum information between microwave and optical fields.
View Article and Find Full Text PDFDistributing entanglement over long distances using optical networks is an intriguing macroscopic quantum phenomenon with applications in quantum systems for advanced computing and secure communication. Building quantum networks requires scalable quantum light-matter interfaces based on atoms, ions or other optically addressable qubits. Solid-state emitters, such as quantum dots and defects in diamond or silicon carbide, have emerged as promising candidates for such interfaces.
View Article and Find Full Text PDFWe demonstrate optical probing of spectrally resolved single Nd^{3+} rare-earth ions in yttrium orthovanadate. The ions are coupled to a photonic crystal resonator and show strong enhancement of the optical emission rate via the Purcell effect, resulting in near radiatively limited single photon emission. The measured high coupling cooperativity between a single photon and the ion allows for the observation of coherent optical Rabi oscillations.
View Article and Find Full Text PDFOptical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity.
View Article and Find Full Text PDFWe identify the physical mechanisms responsible for the optical homogeneous broadening in Eu:YO nanoparticles to determine whether rare-earth crystals can be miniaturized to volumes less than λ while preserving their appeal for quantum technology hardware. By studying how the homogeneous line width depends on temperature, applied magnetic field, and measurement time scale, the dominant broadening interactions for various temperature ranges above 3 K were characterized. Below 3 K the homogeneous line width is dominated by an interaction not observed in bulk crystal studies.
View Article and Find Full Text PDFWe report the measurement of the inhomogeneous linewidth, homogeneous linewidth, and spin-state lifetime of Pr3+ ions in a novel waveguide architecture. The TeO2 slab waveguide deposited on a bulk Pr3+∶Y2SiO5 crystal allows the 3H4↔1D2 transition of Pr3+ ions to be probed by the optical evanescent field that extends into the substrate. The 2-GHz inhomogeneous linewidth, the optical coherence time of 70±5 μs, and the spin-state lifetime of 9.
View Article and Find Full Text PDFSpace-like separation of entangled quantum states is a central concept in fundamental investigations of quantum mechanics and in quantum communication applications. Optical approaches are ubiquitous in the distribution of entanglement because entangled photons are easy to generate and transmit. However, extending this direct distribution beyond a range of a few hundred kilometres to a worldwide network is prohibited by losses associated with scattering, diffraction and absorption during transmission.
View Article and Find Full Text PDF