Nat Rev Drug Discov
November 2004
Computational approaches that 'dock' small molecules into the structures of macromolecular targets and 'score' their potential complementarity to binding sites are widely used in hit identification and lead optimization. Indeed, there are now a number of drugs whose development was heavily influenced by or based on structure-based design and screening strategies, such as HIV protease inhibitors. Nevertheless, there remain significant challenges in the application of these approaches, in particular in relation to current scoring schemes.
View Article and Find Full Text PDFA novel compound classification algorithm is described that operates in binary molecular descriptor spaces and groups active compounds together in a computationally highly efficient manner. The method involves the transformation of continuous descriptor value ranges into a binary format, subsequent definition of simplified descriptor spaces, identification of consensus positions of specific compound sets in these spaces, and iterative adjustments of the dimensionality of the descriptor spaces in order to discriminate compounds sharing similar activity from others. We term this approach Dynamic Mapping of Consensus positions (DMC) because the definition of reference spaces is tuned toward specific compound classes and their dimensionality is increased as the analysis proceeds.
View Article and Find Full Text PDFNovel regioisomers of conformationally constrained analogues of the potent es nucleoside transporter ligand, nitrobenzylmercaptopurine riboside (NBMPR), designed for probing its bound (bioactive) conformation, were synthesized and evaluated as es transporter ligands by flow cytometry. Purine 6-position 5, 6, 7, or 8-nitro-1,2,3,4-tetrahydroisoquinolylpurine ribosides, in which the nitrobenzyl moiety in NBMPR has been locked into the nitro-1,2,3,4-tetrahydroisoquinoline system, were synthesized by reaction of the appropriate nitro-1,2,3,4-tetrahydroisoquinoline with 6-chloropurine riboside. Flow cytometry was performed using 5-(SAENTA)-X8-fluorescein as the competitive ligand.
View Article and Find Full Text PDFJ Chem Inf Comput Sci
April 2003
Recently, we have introduced the median partitioning (MP) method for diversity selection and compound classification. The MP approach utilizes property descriptors with continuous value ranges, transforms these descriptors into a binary classification scheme by determining their medians in source databases, and divides database molecules in subsequent steps into populations above or below these medians. Having previously demonstrated the usefulness of MP for the classification of molecules according to biological activity, we have now gone a step further and extended the methodology for application in virtual screening.
View Article and Find Full Text PDF