Publications by authors named "John Furness"

Introduction: Gastrointestinal (GI) magnetic resonance imaging (MRI) enables simultaneous assessment of gastric peristalsis, emptying, and intestinal filling and transit. However, GI MRI in animals typically requires anesthesia, which complicates physiology and confounds interpretation and translation to humans. This study aimed to establish GI MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions.

View Article and Find Full Text PDF

The relaxin-family peptide 3 receptor (RXFP3) and its native ligand, relaxin-3, are expressed in specific populations of brain neurons, and research on this system has focused on its role in the central nervous system. However, some studies have indicated that relaxin-3 and RXFP3 are also expressed in peripheral organs, including the gut. In this study, we characterised the identity of RXFP3-expressing cells in the gastrointestinal tract, using RXFP3-Cre/tdTomato reporter mice.

View Article and Find Full Text PDF

Introduction: Gastrointestinal (GI) magnetic resonance imaging (MRI) can simultaneously capture gastric peristalsis, emptying, and intestinal filling and transit. Performing GI MRI with animals requires anesthesia, which complicates physiology and confounds interpretation and translation from animals to humans. This study aims to enable MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied chronic diarrhea in rhesus macaques, which is often linked to various gastrointestinal issues, and found that it occurs spontaneously in these primates.
  • The study tracked stool consistency and assessed inflammation through various methods over 12 years, finding recurrent diarrhea and inflammation despite normal endoscopic results.
  • By applying left vagal nerve stimulation for 9 weeks, the severity of diarrhea and inflammation significantly decreased, suggesting that this model can help in understanding diarrhea and its treatments in ways that human studies cannot.
View Article and Find Full Text PDF

The stomach's ability to store, mix, propel, and empty its content requires highly coordinated motor functions. However, current diagnostic tools cannot simultaneously assess these motor processes. This study aimed to use magnetic resonance imaging (MRI) to map multifaceted gastric motor functions, including accommodation, tonic and peristaltic contractions, and emptying, through a single noninvasive experiment for both humans and rats.

View Article and Find Full Text PDF

Rhythmic electrical events, termed slow waves, govern the timing and amplitude of phasic contractions of the gastric musculature. Extracellular multielectrode measurement of gastric slow waves can be a biomarker for phenotypes of motility dysfunction. However, a gastric slow-wave conduction pathway for the rat, a common animal model, is unestablished.

View Article and Find Full Text PDF

Neurons that originate from pre-vertebral sympathetic ganglia, the splanchnic-celiac-superior mesenteric ganglion complex (SCSMG) in mouse, have important roles in control of organs of the upper abdomen. Here, we present a protocol for the isolation of the mouse sympathetic SCSMG. We describe steps for surgical incision, ganglia isolation, ganglia fine dissection, and whole-mount SCSMG after clearing-enhanced 3D (Ce3D) clearing method and immunohistochemistry.

View Article and Find Full Text PDF

Progeny born to primiparous sows (gilt progeny; GP) have lower birth, weaning and slaughter weights than sow progeny (SP). GP also have reduced gastrointestinal tract (GIT) development, as evidenced by lower organ weights. Therefore, the aim of this experiment was to quantify changes in GIT barrier function that occur in birth and weaning, representing two major challenges to the young piglet.

View Article and Find Full Text PDF

To investigate noxious stimulation-responsive neural circuits that could influence the gut, we recorded from intestinally directed (efferent) nerve filaments dissected from mesenteric nerves close to the small intestine in anesthetized rats. These exhibited baseline multiunit activity that was almost unaffected by vagotomy (VagX) and reduced only slightly by cutting the splanchnic nerves. The activity was halved by hexamethonium (Hex) treatment.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disorder involving psychiatric, cognitive and motor deficits, as well as peripheral symptoms, including gastrointestinal dysfunction. The R6/1 HD mouse model expresses a mutant human huntingtin transgene and has been shown to provide an accurate disease model. Recent evidence of gut microbiome disruption was shown in preclinical and clinical HD.

View Article and Find Full Text PDF

Neural regulation of gastric motility occurs partly through the regulation of gastric bioelectrical slow waves (SWs) and phasic contractions. The interaction of the tissues and organs involved in this regulatory process is complex. We sought to infer the relative importance of cellular mechanisms in inhibitory neural regulation of the stomach by enteric neurons and the interaction of inhibitory and excitatory electrical field stimulation.

View Article and Find Full Text PDF

The stomach is the primary reservoir of the gastrointestinal tract, where ingested content is broken down into small particles. Coordinated relaxation and contraction is essential for rhythmic motility and digestion, but how the muscle motor innervation is organized to provide appropriate graded regional control is not established. In this study, we recorded neuromuscular transmission to the circular muscle using intracellular microelectrodes to investigate the spread of the influence of intrinsic motor neurons.

View Article and Find Full Text PDF

The dorsal root ganglia (DRG) project spinal afferent axons to the stomach. However, the distribution and morphology of spinal afferent axons in the stomach have not been well characterized. In this study, we used a combination of state-of-the-art techniques, including anterograde tracer injection into the left DRG T7-T11, avidin-biotin and Cuprolinic Blue labeling, Zeiss M2 Imager, and Neurolucida to characterize spinal afferent axons in flat-mounts of the whole rat stomach muscular wall.

View Article and Find Full Text PDF

Agonists of dopamine D2 receptors (D2R), 5-hydroxytryptamine (5-HT, serotonin) receptors (5-HTR) and ghrelin receptors (GHSR) activate neurons in the lumbosacral defecation centre, and act as 'colokinetics', leading to increased propulsive colonic motility, in vivo. In the present study, we investigated which neurons in the lumbosacral defecation centre express the receptors and whether dopamine, serotonin and ghrelin receptor agonists act on the same lumbosacral preganglionic neurons (PGNs). We used whole cell electrophysiology to record responses from neurons in the lumbosacral defecation centre, following colokinetic application, and investigated their expression profiles and the chemistries of their neural inputs.

View Article and Find Full Text PDF

Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers (e.g.

View Article and Find Full Text PDF

Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine (5-HT) to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined.

View Article and Find Full Text PDF

Climate change is associated with an increased frequency and intensity of heat waves, posing a threat of heat stress to pig production. Heat stress compromises the efficiency of pig production partly due to causing oxidative stress, intestinal dysfunction, and inflammatory responses. Superoxide dismutase is an antioxidant enzyme reported to reduce oxidative stress and inflammation.

View Article and Find Full Text PDF

Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers [e.g.

View Article and Find Full Text PDF

Patients with Hirschsprung disease lack enteric ganglia in the distal colon and propulsion of colorectal content is substantially impaired. Proposed stem cell therapies to replace neurons require surgical bypass of the aganglionic bowel during re-colonization, but there is inadequate knowledge of the consequences of bypass. We performed bypass surgery in Ednrb-/- Hirschsprung rat pups.

View Article and Find Full Text PDF

Objective: Gastrointestinal magnetic resonance imaging (MRI) provides rich spatiotemporal data about the movement of the food inside the stomach, but does not directly report muscular activity on the stomach wall. Here we describe a novel approach to characterize the motility of the stomach wall that drives the volumetric changes of the ingesta.

Methods: A neural ordinary differential equation was optimized to model a diffeomorphic flow that ascribed the deformation of the stomach wall to a continuous biomechanical process.

View Article and Find Full Text PDF

The common occurrence of gastric disorders, the accelerating emphasis on the role of the gut-brain axis, and development of realistic, predictive models of gastric function, all place emphasis on increasing understanding of the stomach and its control. However, the ways that regions of the stomach have been described anatomically, physiologically, and histologically do not align well. Mammalian single compartment stomachs can be considered as having four anatomical regions fundus, corpus, antrum, and pyloric sphincter.

View Article and Find Full Text PDF

All life forms must gain nutrients from the environment and from single cell organisms to mammals a digestive system is present. Components of the digestive system that are recognized in mammals can be seen in the sea squirt that has had its current form for around 500my. Nevertheless, in mammals, the organ system that is most varied is the digestive system, its architecture being related to the dietary niche of each species.

View Article and Find Full Text PDF

An anatomically based 3D computational model of the rat stomach was developed using experimental muscle thickness measurements and muscle fiber orientations for the longitudinal muscle (LM) and circular muscle (CM) layers. First, 15 data points corresponding to the measurements were registered on the dorsal and ventral faces of the serosal surface of an averaged 3D rat stomach model. A thickness field representing the varying wall thickness was fitted to the surface and nodal points were projected outwards (for the LM layer) and inwards (for the CM layer) to create 2 new surfaces.

View Article and Find Full Text PDF

The gastrointestinal hormone, insulin-like peptide 5 (INSL5), is found in large intestinal enteroendocrine cells (EEC). One of its functions is to stimulate nerve circuits that increase propulsive activity of the colon through its receptor, the relaxin family peptide 4 receptor (RXFP4). To investigate the mechanisms that link INSL5 to stimulation of propulsion, we have determined the localisation of cells expressing Rxfp4 in the mouse colon, using a reporter mouse to locate cells expressing the gene.

View Article and Find Full Text PDF