mRNA translation is regulated by diverse mechanisms that converge at the initiation and elongation steps to determine the rate, profile, and localization of proteins synthesized. A consistently relevant feature of these mechanisms is the spatial re-distribution of translation machinery, a process of particular importance in neural cells. This process has, however, been largely overlooked with respect to its potential role in regulating the local concentration of cytoplasmic tRNAs, even as a multitude of data suggest that spatial regulation of the tRNA pool may help explain the remarkably high rates of peptide elongation.
View Article and Find Full Text PDFCell-free protein synthesis has emerged as a powerful technology for rapid and efficient protein production. Cell-free methods are also amenable to automation and such systems have been extensively used for high-throughput protein production and screening; however, current fluidic systems are not adequate for manufacturing protein biopharmaceuticals. In this work, we report on the initial development of a fluidic process for rapid end-to-end production of recombinant protein biologics.
View Article and Find Full Text PDFTerminally differentiated primary cells represent a valuable in vitro model to study signaling events associated within a specific tissue. Quantitative proteomic methods using metabolic labeling in primary cells encounter labeling efficiency issues hindering the use of these cells. Here we developed a method to quantify the proteome and phosphoproteome of cultured neurons using (15)N-labeled brain tissue as an internal standard and applied this method to determine how an inhibitor of an excitatory neural transmitter receptor, phencyclidine (PCP), affects the global phosphoproteome of cortical neurons.
View Article and Find Full Text PDFState-resolved photodissociation dynamics of formaldehyde-d(2), i.e., D(2)CO, at energies slightly above the deuterium atom elimination channel have been studied both experimentally and theoretically.
View Article and Find Full Text PDFWe investigate the dependence of the branching ratio of formaldehyde dissociation to molecular and radical products on the total energy and angular momentum and the HCO rotational state distributions by using a combination of transition state/Rice-Ramsperger-Kassel-Marcus theory and phase space theory. Comparisons are made with recent quasiclassical trajectory (QCT) calculations [Farnum, J. D.
View Article and Find Full Text PDFQuasiclassical trajectory calculations are reported to investigate the effects of rotational excitation of formaldehyde on the branching ratios of the fragmentation products, H2+CO and H+HCO. The results of tens of thousands of trajectories show that increased rotational excitation causes suppression of the radical channel and enhancement of the molecular channel. Decomposing the molecular channel into "direct" and "roaming" channels shows that increased rotation switches from suppressing to enhancing the roaming products across our chosen energy range.
View Article and Find Full Text PDFWe present a detailed experimental and theoretical investigation of formaldehyde photodissociation to H(2) and CO following excitation to the 2(1)4(1) and 2(1)4(3) transitions in S(1). The CO velocity distributions were obtained using dc slice imaging of single CO rotational states (v=0, j(CO)=5-45). These high-resolution measurements reveal the correlated internal state distribution in the H(2) cofragments.
View Article and Find Full Text PDFUnderstanding and modeling the interaction between light and matter is essential to the theory of optical molecular control. While the effect of the electric field on a molecule's electronic structure is often not included in control theory, it can be modeled in an optimal control algorithm by a set or toolkit of potential energy surfaces indexed by discrete values of the electric field strength where the surfaces are generated by Born-Oppenheimer electronic structure calculations that directly include the electric field. Using a new optimal control algorithm with a trigonometric mapping to limit the maximum field strength explicitly, we apply the surface-toolkit method to control the hydrogen fluoride molecule.
View Article and Find Full Text PDFSpectral difference methods represent the real-space Hamiltonian of a quantum system as a banded matrix which possesses the accuracy of the discrete variable representation (DVR) and the efficiency of finite differences. When applied to time-dependent quantum mechanics, spectral differences enhance the efficiency of propagation methods for evolving the Schrodinger equation. We develop a spectral difference Lanczos method which is computationally more economical than the sinc-DVR Lanczos method, the split-operator technique, and even the fast-Fourier-Transform Lanczos method.
View Article and Find Full Text PDF