Publications by authors named "John Fakhry"

Desmoplasia in pancreatic ductal adenocarcinoma (PDAC) limits the penetration and efficacy of therapies. It has been previously shown that photodynamic priming (PDP) using EGFR targeted photoactivable multi-inhibitor liposomes remediates desmoplasia in PDAC and doubles overall survival. Here, bifunctional PD-L1 immune checkpoint targeted photoactivable liposomes (iTPALs) that mediate both PDP and PD-L1 blockade are presented.

View Article and Find Full Text PDF

Photodynamic priming (PDP) leverages the photobiological effects of subtherapeutic photodynamic therapy (PDT) regimens to modulate the tumor vasculature and stroma. PDP also sensitizes tumors to secondary therapies, such as immunotherapy by inducing a cascade of molecular events, including immunogenic cell death (ICD). We and others have shown that PDP improves the delivery of antibodies, among other theranostic agents.

View Article and Find Full Text PDF

Osmium (Os) based photosensitizers (PSs) are a unique class of nontetrapyrrolic metal-containing PSs that absorb red light. We recently reported a highly potent Os(II) PS, rac-[Os(phen) (IP-4T)](Cl) , referred to as ML18J03 herein, with light EC values as low as 20 pm. ML18J03 also exhibits low dark toxicity and submicromolar light EC values in hypoxia in some cell lines.

View Article and Find Full Text PDF
Article Synopsis
  • Osmium-based photosensitizers like [Os(phen)(IP-4T)](Cl) (ML18J03) are effective for photodynamic therapy (PDT) in deeper tissues but have low luminescence quantum yield, limiting imaging potential.
  • Formulating ML18J03 into 10.2 nm DSPE-mPEG micelles (Mic-ML18J03) significantly boosts its luminescence yield by 100 times and enhances detection in tumors.
  • The micellar formulation improves tumor selectivity and stability while also increasing the production of reactive species needed for effective PDT, showing promise for better imaging and treatment outcomes.
View Article and Find Full Text PDF

Fluorescence image-guided surgery (IGS) using antibody conjugates of the fluorophore IRDye800CW have revolutionized the surgical debulking of tumors. Cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody, conjugated to IRDye800CW (Cet-IRDye800) is the first molecular targeted antibody probe to be used for IGS in head and neck cancer patients. In addition to surgical debulking, Cetuximab-targeted photodynamic therapy (photoimmunotherapy; PIT) is emerging in the clinic as a powerful modality for head and neck tumor photodestruction.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona851n9js439vu4o4qr9b5sa57kdds3at): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once