Unlabelled: Squamous cell carcinomas, which arise from the cells that line the mucosal surfaces of the head and neck, represent the most common type of head and neck cancers (HNSCC). Human papillomavirus (HPV) infection has been strongly associated with the development of oropharyngeal cancers, which are cancers that occur in the back of the throat, including the tonsils and base of the tongue. HNSCCs with and without HPV infection have distinct pathology, with HPV-positive patients having higher levels of immune infiltration, activation in the tumor microenvironment and better response to radiation and chemotherapy.
View Article and Find Full Text PDFCTLA-4 is a crucial immune checkpoint receptor involved in the maintenance of immune homeostasis, tolerance, and tumor control. Antibodies targeting CTLA-4 have been promising treatments for numerous cancers, but the mechanistic basis of their anti-tumoral immune-boosting effects is poorly understood. Although the ctla4 gene also encodes an alternatively spliced soluble variant (sCTLA-4), preclinical/clinical evaluation of anti-CTLA-4-based immunotherapies have not considered the contribution of this isoform.
View Article and Find Full Text PDFNeuroblastoma is the most frequent extracranial childhood tumour but effective treatment with current immunotherapies is challenging due to its immunosuppressive microenvironment. Efforts to date have focused on using immunotherapy to increase tumour immunogenicity and enhance anticancer immune responses, including anti-GD2 antibodies; immune checkpoint inhibitors; drugs which enhance macrophage and natural killer T (NKT) cell function; modulation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway; and engineering neuroblastoma-targeting chimeric-antigen receptor-T cells. Some of these strategies have strong preclinical foundation and are being tested clinically, although none have demonstrated notable success in treating paediatric neuroblastoma to date.
View Article and Find Full Text PDFConditioning of the bone marrow prior to haematopoietic stem cell transplant is essential in eradicating the primary cause of disease, facilitating donor cell engraftment and avoiding transplant rejection via immunosuppression. Standard conditioning regimens, typically comprising chemotherapy and/or radiotherapy, have proven successful in bone marrow clearance but are also associated with severe toxicities and high incidence of treatment-related mortality. Antibody-based conditioning is a developing field which, thus far, has largely shown an improved toxicity profile in experimental models and improved transplant outcomes, compared to traditional conditioning.
View Article and Find Full Text PDFMyeloid malignancies are a heterogeneous group of clonal haematopoietic disorders, caused by abnormalities in haematopoietic stem cells (HSCs) and myeloid progenitor cells that originate in the bone marrow niche. Each of these disorders are unique and present their own challenges with regards to treatment. Acute myeloid leukaemia (AML) is considered the most aggressive myeloid malignancy, only potentially curable with intensive cytotoxic chemotherapy with or without allogeneic haematopoietic stem cell transplantation.
View Article and Find Full Text PDFIt has now become increasingly clear that viruses, which may not be directly oncogenic, can affect the biology of tumors as well as immune behavior against tumors. This has led to a fundamental question: Should tumors associated with viral infection be considered distinct from those without? Typically, viruses activate the host innate immune responses by stimulating pathogen recognition receptors and DNA-sensing pathways, including the stimulator of interferon genes (STING) pathway. However, regulation of the STING pathway in a virus-associated tumor microenvironment is poorly understood.
View Article and Find Full Text PDFDespite strong biological rationale for the use of type-I IFNs for the treatment of acute myeloid leukemia (AML), their usage is limited to few hematologic malignancies. Here, we propose that innate immune sensing machinery, particularly the stimulator of IFN genes pathway, may be exploited to deliver antileukemic effects in AML.
View Article and Find Full Text PDFDNA damage is well recognized as a critical factor in cancer development and progression. DNA lesions create an abnormal nucleotide or nucleotide fragment, causing a break in one or both chains of the DNA strand. When DNA damage occurs, the possibility of generated mutations increases.
View Article and Find Full Text PDFOur previous studies demonstrated that INPP4B, a member of the PI3K/Akt signaling pathway, is overexpressed in a subset of AML patients and is associated with lower response to chemotherapy and shorter survival. INPP4B expression analysis in AML revealed a right skewed frequency distribution with 25% of patients expressing significantly higher levels than the majority. The 75% low/25% high cut-off revealed the prognostic power of INPP4B expression status in AML, which would not have been apparent with a standard median cut-off approach.
View Article and Find Full Text PDFRecent advancements have driven the development of smaller footprint, less expensive, and user-friendly flow cytometers introducing the technology to more users.Flow cytometry is an established tool for multiparametric analysis of various important cellular characteristics. Fluorescent dyes or fluorophore-conjugated antibodies allow for measurement of protein expression, identification of cell populations, or DNA content analysis.
View Article and Find Full Text PDFINPP4B acts as a tumor suppressor in various epithelial cancers by inhibiting PI3K/Akt signaling. Unexpectedly, tumor-promoting features of INPP4B in leukemia and breast cancer have been recently uncovered. In this spotlight, we discuss the seemingly paradoxical nature of INPP4B-mediated signaling in cancer.
View Article and Find Full Text PDFInternal tandem duplication of the FMS-like tyrosine kinase (FLT3-ITD) receptor is present in 20% of acute myeloid leukemia (AML) patients and it has been associated with an aggressive AML phenotype. FLT3-ITD expressing cell lines have been shown to generate increased levels of reactive oxygen species (ROS) and DNA double strand breaks (DSBs). However, the molecular basis of how FLT3-ITD-driven ROS leads to the aggressive form of AML is not clearly understood.
View Article and Find Full Text PDFConstitutive expression of the Bcr-Abl kinase in Chronic Myelogenous Leukaemia (CML) is known to produce elevated levels of Reactive Oxygen Species (ROS) which can enhance cell survival as well as generate genomic instability. Our laboratory has previously demonstrated that NADPH oxidase (Nox) activity contributes to intracellular-ROS levels in Bcr-Abl-positive cells, while inducing increased pro-survival signalling through the PI3K/Akt pathway. How Bcr-Abl signalling regulates Nox activity still remains to be elucidated.
View Article and Find Full Text PDFSignificance: Once the thought of as unwanted byproducts of cellular respiration in eukaryotes, reactive oxygen species (ROS) have been shown to facilitate essential physiological roles. It is now understood that ROS are critical mediators of intracellular signaling. Control of signal transduction downstream of growth factor receptors by ROS is a complex process whose details are only recently coming to light.
View Article and Find Full Text PDFSurgery induced inflammation is a potent promoter of tumour recurrence and metastasis in colorectal cancer. The recently discovered family of Nox enzymes represent a major source of endogenous reactive oxygen species (ROS) and are now heavily implicated in tumour cell metastasis. Interestingly, Nox enzymes can be 'purposefully' activated by inflammatory cytokines and growth factors which are present in abundance in the peri-operative window.
View Article and Find Full Text PDFThe internal tandem duplication (ITD) of the juxtamembrane region of the FLT3 receptor has been associated with increased reactive oxygen species (ROS) generation in acute myeloid leukemia (AML). How this elevated level of ROS contributes to the leukemic phenotype, however, remains poorly understood. In this work we show that ROS in the FLT3-ITD expressing AML cell line MV4-11 is reduced by treatment with PKC412, an inhibitor of FLT3, DPI, a flavoprotein inhibitor, and VAS2870, a Nox specific inhibitor, suggesting that ROS production is both FLT3 and NADPH oxidase dependent.
View Article and Find Full Text PDFOne approach to improving mammalian culture productivity has been to reduce cell stress and cell death in the bioreactor, thus enhancing productivity through a longer phase of viability. Here we describe the isolation and identification of a biomarker for stress and viability loss in CHO culture. Using SELDI-TOF mass spectrometry to profile the protein component of supernatant culture media we have identified a peak at 7.
View Article and Find Full Text PDFSurface Enhanced Laser Desorption/Ionisation Time-of-Fight Mass Spectrometry (SELDI-TOF MS) is a technique by which protein profiles can be rapidly produced from a wide variety of biological samples. By employing chromatographic surfaces combined with the specificity and reproducibility of mass spectrometry it has allowed for profiles from complex biological samples to be analysed. Profiling and biomarker identification have been employed widely throughout the biological sciences.
View Article and Find Full Text PDF