Antimicrob Agents Chemother
April 2015
New agents are urgently needed for the therapeutic treatment of Staphylococcus aureus infections. In that regard, S. aureus RNase RnpA may represent a promising novel dual-function antimicrobial target that participates in two essential cellular processes, RNA degradation and tRNA maturation.
View Article and Find Full Text PDFActivity-dependent CREB phosphorylation and gene expression are critical for long-term neuronal plasticity. Local signaling at CaV1 channels triggers these events, but how information is relayed onward to the nucleus remains unclear. Here, we report a mechanism that mediates long-distance communication within cells: a shuttle that transports Ca(2+)/calmodulin from the surface membrane to the nucleus.
View Article and Find Full Text PDFRecent studies suggest a link between mitochondria and proinflammatory cytokine generation. We previously demonstrated that overexpression of mitochondrial chaperone glucose-regulated protein75 (Grp75/mortalin) protects mitochondria. In this study we investigated the modulation of the lipopolisaccharide (LPS)-induced inflammatory response of microglial BV-2 cells by Grp75.
View Article and Find Full Text PDFBackground: Activation of the NF-κB transcription factor and its associated gene expression in microglia is a key component in the response to brain injury. Its activation is dynamic and is part of a network of biochemical species with multiple feedback regulatory mechanisms. Mathematical modeling, which has been instrumental for understanding the NF-κB response in other cell types, offers a valuable tool to investigate the regulation of NF-κB activation in microglia at a systems level.
View Article and Find Full Text PDFCa(2+) transfer from endoplasmic reticulum (ER) to mitochondria at contact sites between the organelles can induce mitochondrial dysfunction and programmed cell death after stress. The ER-localized chaperone glucose-regulated protein 78kDa (GRP78/BiP) protects neurons against excitotoxicity and apoptosis. Here we show that overexpressing GRP78 protects astrocytes against ischemic injury, reduces net flux of Ca(2+) from ER to mitochondria, increases Ca(2+) uptake capacity in isolated mitochondria, reduces free radical production, and preserves respiratory activity and mitochondrial membrane potential after stress.
View Article and Find Full Text PDFThe impairment of hippocampal neurogenesis has been linked to the pathogenesis of neurological disorders from chronic neurodegenerative disease to the progressive cognitive impairment of children who receive brain irradiation. Numerous studies provide evidence that inflammation downregulates neurogenesis, with multiple factors contributing to this impairment. Although mitochondria are one of the primary targets of inflammatory injury, the role of mitochondrial function in the modulation of neurogenesis remains relatively unstudied.
View Article and Find Full Text PDFBrief forebrain ischemia is a model of the delayed hippocampal neuronal loss seen in patients following cardiac arrest and resuscitation. Previous studies demonstrated that selective dysfunction of hippocampal CA1 subregion astrocytes occurs hours to days before delayed neuronal death. In this study we tested the strategy of directing protection to astrocytes to protect neighboring neurons from forebrain ischemia.
View Article and Find Full Text PDFMitochondria are known to be central to the cell's response to ischemia, because of their role in energy generation, in free radical generation, and in the regulation of apoptosis. Heat shock protein 75 (Hsp75/Grp75/mortalin/TRAP1) is a member of the HSP70 chaperone family, which is targeted to mitochondria. Overexpression of Hsp75 was achieved in rat brain by DNA transfection, and expression was observed in both astrocytes and neurons.
View Article and Find Full Text PDFAlthough heat shock proteins have been studied for decades, new intracellular and extracellular functions in a variety of diseases continue to be discovered. Heat shock proteins function within networks of interacting proteins; they can alter cellular physiology rapidly in response to stress without requiring new protein synthesis. This review focuses on the heat shock protein 70 family and considers especially the functions of the inducible member, heat shock protein 72, in the setting of cerebral ischemia.
View Article and Find Full Text PDFMitochondrial heat shock protein 70 (mtHsp70/Hsp75/Grp75/mortalin/TRAP-1/PBP74) is an essential mitochondrial chaperone and a member of the heat shock protein 70 (HSP70) family. Although many studies have shown the protective properties of overexpression of the cytosolic inducible member of the HSP70 family, Hsp72, few studies have investigated the protective potential of Hsp75 against ischemic injury. Mitochondria are one of the primary targets of ischemic injury in astrocytes.
View Article and Find Full Text PDFBackground: Shoots of all land plants have a radial pattern that can be considered to have an adaxial (central)-abaxial (peripheral) polarity. In Arabidopsis, gain-of-function alleles of PHAVOLUTA and PHABULOSA, members of the class III HD-ZIP gene family, result in adaxialization of lateral organs. Conversely, loss-of-function alleles of the KANADI genes cause an adaxialization of lateral organs.
View Article and Find Full Text PDF