In this paper, we present a new protocol for achieving lower noise and consequently a higher dynamic range in optical encryption. This protocol allows for the securing and optimal recovery of any arbitrary grayscale images encrypted using an experimental double random phase mask encoding (DPRE) cryptosystem. The protocol takes advantage of recent advances that help reduce the noise due to the correlation of random phase mask in the decryption procedure and introduces the use of a "reference mask" as a reference object used to eliminate the noise due to the complex nature of the masks used in experimental DRPE setups.
View Article and Find Full Text PDFPurpose: We present the first physiological evaluation of the use of the light sword lens (LSL) for presbyopia compensation. The LSL is an axially asymmetric optical element designed for imaging with extended depth of focus.
Methods: A monocular visual simulator setup is implemented to measure visual acuity (VA).
In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code "container", adds more protection to the encoding proposal.
View Article and Find Full Text PDFWe report, to our knowledge for the first time, the experimental implementation of a quick response (QR) code as a "container" in an optical encryption system. A joint transform correlator architecture in an interferometric configuration is chosen as the experimental scheme. As the implementation is not possible in a single step, a multiplexing procedure to encrypt the QR code of the original information is applied.
View Article and Find Full Text PDFWe introduce for the first time the concept of an information "container" before a standard optical encrypting procedure. The "container" selected is a QR code which offers the main advantage of being tolerant to pollutant speckle noise. Besides, the QR code can be read by smartphones, a massively used device.
View Article and Find Full Text PDFIn this Letter, we present to the best of our knowledge a new all-optical technique for multiple-image encryption and multiplexing, based on fractal encrypting masks. The optical architecture is a joint transform correlator. The multiplexed encrypted data are stored in a photorefractive crystal.
View Article and Find Full Text PDFIn experimental optodigital encrypting architectures, the use of a reference wave is essential. In this contribution, we present an experimental alternative to avoid the reference wave during the encrypting procedure in a joint transform correlator architecture by introducing the concept of a master key. Besides, the master key represents an additional security element for the entire protocol.
View Article and Find Full Text PDFWe present the first experimental technique to encrypt a movie under a joint transform correlator architecture. We also extend the method to multiplex several movies in a single package. We use a Mach-Zehnder interferometer to encrypt experimentally each movie.
View Article and Find Full Text PDFWe demonstrate a smart image-packaging optical technique that uses what we believe is a new concept to save byte space when transmitting data. The technique supports a large set of images mapped into modulated speckle patterns. Then, they are multiplexed into a single package.
View Article and Find Full Text PDFWe introduce a way to encrypt-decrypt a color dynamical phenomenon using a pure optical alternative. We split the three basic chromatic channels composing the input, and then each channel is processed through a 4f encoding method and a theta modulation applied to the each encrypted frame in every channel. All frames for a single channel are multiplexed.
View Article and Find Full Text PDFWe introduce for the first time the concept of an all-optical encrypted movie. This movie joints several encrypted frames corresponding to a time evolving situation employing the same encoding mask. Thanks to a multiplexing operation we compact the encrypted movie information into a single package.
View Article and Find Full Text PDFWe demonstrate in this Letter that a joint transform correlator shows vulnerability to known-plaintext attacks. An unauthorized user, who intercepts both an object and its encrypted version, can obtain the security key code mask. In this contribution, we conduct a hybrid heuristic attack scheme merge to a Gerchberg-Saxton routine to estimate the encrypting key to decode different ciphertexts encrypted with that same key.
View Article and Find Full Text PDFWe present a method that allows storing multiple encrypted data using digital holography and a joint transform correlator architecture with a controllable angle reference wave. In this method, the information is multiplexed by using a key and a different reference wave angle for each object. In the recovering process, the use of different reference wave angles prevents noise produced by the nonrecovered objects from being superimposed on the recovered object; moreover, the position of the recovered object in the exit plane can be fully controlled.
View Article and Find Full Text PDF