Publications by authors named "John Enwright"

Background: In schizophrenia (SZ), impairments in cognitive functions, such as working memory, have been associated with alterations in certain types of inhibitory neurons that utilize the neurotransmitter -aminobutyric acid (GABA) in the dorsolateral prefrontal cortex (DLPFC). For example, GABA neurons that express parvalbumin (PV) or somatostatin (SST) have more prominent gene expression alterations than those that express vasoactive intestinal peptide (VIP). In bipolar disorder (BD) and major depression (MD), which exhibit similar, but less severe, cognitive impairments than SZ, alterations of transcript levels in GABA neurons have also been reported.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how transcriptomes, or gene expression profiles, of two types of layer 3 pyramidal neurons (CP and IP) in the DLPFC change as macaque monkeys develop from prepuberty to adulthood, especially in relation to working memory and schizophrenia.
  • Using techniques like retrograde labeling and RNA sequencing, the researchers discovered that both neuron types exhibited distinct transcriptomes at all ages, with gene expression changes becoming more pronounced as the monkeys matured.
  • Findings suggest that IP neurons mature faster than CP neurons, indicating that these subtypes may play different roles in the development of working memory and could have varying vulnerabilities to schizophrenia during late postnatal development.
View Article and Find Full Text PDF
Article Synopsis
  • The study talks about how people with schizophrenia have problems with visuospatial working memory, which is the ability to remember visual information and how things relate to each other in space.
  • Researchers found that certain brain cells called PV and SST neurons don't work as well in people with schizophrenia, and this affects other brain cells called pyramidal neurons.
  • The scientists measured specific transcripts (kind of like instructions for how cells work) in different brain areas and found that people with schizophrenia had lower levels, which could cause the memory problems they experience.
View Article and Find Full Text PDF

Dysfunction of the cortical dorsal visual stream and visuospatial working memory (vsWM) network in individuals with schizophrenia (SZ) likely reflects alterations in both excitatory and inhibitory neurotransmission within nodes responsible for information transfer across the network, including primary visual (V1), visual association (V2), posterior parietal (PPC), and dorsolateral prefrontal (DLPFC) cortices. However, the expression patterns of ionotropic glutamatergic and GABAergic receptor subunits across these regions, and alterations of these patterns in SZ, have not been investigated. We quantified transcript levels of key subunits for excitatory N-methyl-D-aspartate receptors (NMDARs), excitatory alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), and inhibitory GABA receptors (GABAARs) in postmortem total gray matter from V1, V2, PPC, and DLPFC of unaffected comparison (UC) and matched SZ subjects.

View Article and Find Full Text PDF

In primates, the dorsolateral prefrontal (DLPFC) and posterior parietal (PPC) cortices are key nodes in the working memory network. The working memory-related gamma oscillations induced in these areas, predominantly in layer 3, exhibit higher frequency in DLPFC. Although these regional differences in oscillation frequency are likely essential for information transfer between DLPFC and PPC, the mechanisms underlying these differences remain poorly understood.

View Article and Find Full Text PDF

Reciprocal connections between primate dorsolateral prefrontal (DLPFC) and posterior parietal (PPC) cortices, furnished by subsets of layer 3 pyramidal neurons (PNs), contribute to cognitive processes including working memory (WM). A different subset of layer 3 PNs in each region projects to the homotopic region of the contralateral hemisphere. These ipsilateral (IP) and callosal (CP) projections, respectively, appear to be essential for the maintenance and transfer of information during WM.

View Article and Find Full Text PDF

Visuospatial working memory (vsWM), which is impaired in schizophrenia (SZ), is mediated by a distributed cortical network. In one node of this network, the dorsolateral prefrontal cortex (DLPFC), altered expression of transcripts for actin assembly and mitochondrial oxidative phosphorylation (OXPHOS) have been reported in SZ. To understand the relationship between these processes, and the extent to which similar alterations are present in other regions of vsWM network in SZ, a subset of actin- (CDC42, BAIAP2, ARPC3, and ARPC4) and OXPHOS-related (ATP5H, COX4I1, COX7B, and NDUFB3) transcripts were quantified in DLPFC by RNA sequencing in 139 SZ and unaffected comparison (UC) subjects, and in DLPFC and three other regions of the cortical vsWM network by qPCR in 20 pairs of SZ and UC subjects.

View Article and Find Full Text PDF

Schizophrenia (SCZ) and bipolar disorder (BP) share a number of features. For example, multiple transcriptome analyses have reported molecular alterations common to both diagnoses, findings supported by the considerable overlap in the genetic risk for each disorder. These molecular similarities may underlie certain clinical features that are frequently present in both disorders.

View Article and Find Full Text PDF

cAMP signaling has powerful, negative effects on cognitive functions of the primate dorsolateral prefrontal cortex (dlPFC), opening potassium channels to reduce firing and impair working memory, and increasing tau phosphorylation in aging neurons. This contrasts with cAMP actions in classic circuits, where it enhances plasticity and transmitter release. PDE4 isozymes regulate cAMP actions, and thus have been a focus of research and drug discovery.

View Article and Find Full Text PDF

Objective: The shared risk factors and clinical features in schizophrenia and bipolar disorder may be linked via mitochondrial dysfunction. However, the severity of mitochondrial dysfunction, and/or the specific mitochondrial functional pathways affected, may differ between diagnoses, especially at the level of individual cell types.

Methods: Transcriptomic profiling data for a gene set indexing mitochondrial functional pathways were obtained for dorsolateral prefrontal cortex (DLPFC) gray matter and layer 3 and layer 5 pyramidal neurons of subjects with schizophrenia or bipolar disorder.

View Article and Find Full Text PDF

Pathway enrichment analysis provides a knowledge-driven approach to interpret differentially expressed genes associated with disease status. Many tools have been developed to analyze a single study. However, when multiple studies of different conditions are jointly analyzed, novel integrative tools are needed.

View Article and Find Full Text PDF

Deficits in fast-spiking inhibitory interneurons (FSINs) within the dorsolateral prefrontal cortex (dlPFC) are hypothesized to underlie cognitive impairment associated with schizophrenia. Though representing a minority of interneurons, this key cell type coordinates broad neural network gamma-frequency oscillations, associated with cognition and cognitive flexibility. Here we report expression of GluN2D mRNA selectively in parvalbumin positive cells of human postmortem dlPFC tissue, but not pyramidal neurons, with little to no GluN2C expression in either cell type.

View Article and Find Full Text PDF

Schizophrenia is associated with disrupted cognitive control and sleep-wake cycles. Here we identify diurnal rhythms in gene expression in the human dorsolateral prefrontal cortex (dlPFC), in schizophrenia and control subjects. We find significant diurnal (24 h) rhythms in control subjects, however, most of these transcripts are not rhythmic in subjects with schizophrenia.

View Article and Find Full Text PDF

In primates, working memory function depends on activity in a distributed network of cortical areas that display different patterns of delay task-related activity. These differences are correlated with, and might depend on, distinctive properties of the neurons located in each area. For example, layer 3 pyramidal neurons (L3PNs) differ significantly between primary visual and dorsolateral prefrontal (DLPFC) cortices.

View Article and Find Full Text PDF

Cognitive dysfunction in individuals with schizophrenia is thought to reflect, at least in part, altered levels of excitatory and inhibitory neurotransmission in the dorsolateral prefrontal cortex (DLPFC). Studies of the postmortem human brain allow for interrogation of the disease-related alterations in markers of excitatory and inhibitory neurotransmission at different levels of anatomical resolution. Here, we re-analyzed six published datasets from postmortem studies of schizophrenia to assess molecular markers of glutamate and GABA neurotransmission in the DLPFC at three levels of anatomical resolution: 1) total cortical gray matter, 2) gray matter restricted to layer 3, and 3) a layer 3 local circuit composed of excitatory pyramidal cells and inhibitory, parvalbumin-containing, GABA neurons.

View Article and Find Full Text PDF

Decades of research have emphasized the importance of dopamine (DA) D1 receptor (D1R) mechanisms to dorsolateral prefrontal cortex (dlPFC) working memory function, and the hope that D1R agonists could be used to treat cognitive disorders. However, existing D1R agonists all have had high affinity for D1R, and engage β-arrestin signaling, and these agonists have suppressed task-related neuronal firing. The current study provides the first physiological characterization of a novel D1R agonist, PF-3628, with low affinity for D1R -more similar to endogenous DA actions- as well as little engagement of β-arrestin signaling.

View Article and Find Full Text PDF

The diurnal regulation of dopamine is important for normal physiology and diseases such as addiction. Here we find a novel role for the CLOCK protein to antagonize CREB-mediated transcriptional activity at the tyrosine hydroxylase (TH) promoter, which is mediated by the interaction with the metabolic sensing protein, Sirtuin 1 (SIRT1). Additionally, we demonstrate that the transcriptional activity of TH is modulated by the cellular redox state, and daily rhythms of redox balance in the ventral tegmental area (VTA), along with TH transcription, are highly disrupted following chronic cocaine administration.

View Article and Find Full Text PDF

Background: Impairments in certain cognitive processes (e.g., working memory) are typically most pronounced in schizophrenia (SZ), intermediate in bipolar disorder, and least in major depressive disorder.

View Article and Find Full Text PDF

Alterations in cortical parvalbumin (PV)-containing neurons, including a reduced density of detectable neurons and lower PV levels, have frequently been reported in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia subjects. Most PV neurons are surrounded by perineuronal nets (PNNs) and the density of PNNs, as detected by Wisteria floribunda agglutinin (WFA) labeling, has been reported to be lower in schizophrenia. However, the nature of these PNN alterations, and their relationship to disease-related changes in PV neurons, has not been assessed.

View Article and Find Full Text PDF

Objective: In schizophrenia, alterations in markers of cortical GABA neurotransmission are prominent in parvalbumin-containing neurons. Parvalbumin neurons selectively express KCNS3, the gene encoding the Kv9.3 potassium channel α-subunit.

View Article and Find Full Text PDF

Background: Circadian rhythm abnormalities are strongly associated with bipolar disorder; however the role of circadian genes in mood regulation is unclear. Previously, we reported that mice with a mutation in the Clock gene (ClockDelta19) display a behavioral profile that is strikingly similar to bipolar patients in the manic state.

Methods: Here, we used RNA interference and viral-mediated gene transfer to knock down Clock expression specifically in the ventral tegmental area (VTA) of mice.

View Article and Find Full Text PDF

Some of the important biochemical, structural, and behavioral changes induced by chronic exposure to drugs of abuse appear to be mediated by the highly stable transcription factor DeltaFosB. Previous work has shown that DeltaFosB overexpression in mice for 2weeks leads to an increase in the expression of numerous genes in striatum, most of which are later downregulated following 8weeks of FosB expression. Interestingly, a large number of these genes were also upregulated in mice overexpressing the transcription factor CREB.

View Article and Find Full Text PDF

The homeodomain protein Pit-1 cooperates with the basic-leucine zipper protein CCAAT/enhancer binding protein alpha (C/EBPalpha) to control pituitary-specific prolactin gene transcription. We previously observed that C/EBPalpha was concentrated in regions of centromeric heterochromatin in pituitary GHFT1-5 cells and that coexpressed Pit-1 redistributed C/EBPalpha to the subnuclear sites occupied by Pit-1. Here, we used fluorescence resonance energy transfer microscopy to show that when C/EBPalpha was recruited by Pit-1, the average distance separating the fluorophores labeling the proteins was less than 7 nm.

View Article and Find Full Text PDF

The pituitary-specific homeodomain protein Pit-1 cooperates with other transcription factors, including CCAAT/enhancer binding protein alpha (C/EBPalpha), in the regulation of pituitary lactotrope gene transcription. Here, we correlate cooperative activation of prolactin (PRL) gene transcription by Pit-1 and C/EBPalpha with changes in the subnuclear localization of these factors in living pituitary cells. Transiently expressed C/EBPalpha induced PRL gene transcription in pituitary GHFT1-5 cells, whereas the coexpression of Pit-1 and C/EBPalpha in HeLa cells demonstrated their cooperativity at the PRL promoter.

View Article and Find Full Text PDF

Background: A number of transcription factors coordinate differentiation by simultaneously regulating gene expression and cell proliferation. CCAAT/enhancer binding protein alpha (C/EBPalpha) is a basic/leucine zipper transcription factor that integrates transcription with proliferation to regulate the differentiation of tissues involved in energy balance. In the pituitary, C/EBPalpha regulates the transcription of a key metabolic regulator, growth hormone.

View Article and Find Full Text PDF