Mild traumatic brain injury (mTBI) gives rise to a remarkable breadth of pathobiological consequences, principal among which are traumatic axonal injury and perturbation of the functional integrity of neuronal networks that may arise secondary to the elimination of the presynaptic contribution of axotomized neurons. Because there exists a vast diversity of neocortical neuron subtypes, it is imperative to elucidate the relative vulnerability to axotomy among different subtypes. Toward this end, we exploited SOM-IRES-Cre mice to investigate the consequences of the central fluid percussion model of mTBI on the microanatomical integrity and the functional efficacy of the somatostatin (SOM) interneuron population, one of the principal subtypes of neocortical interneuron.
View Article and Find Full Text PDFMild traumatic brain injury (mTBI) affects brain structure and function and can lead to persistent abnormalities. Repetitive mTBI exacerbates the acute phase response to injury. Nonetheless, its long-term implications remain poorly understood, particularly in the context of traumatic axonal injury (TAI), a player in TBI morbidity via axonal disconnection, synaptic loss and retrograde neuronal perturbation.
View Article and Find Full Text PDFMild traumatic brain injury (mTBI) can produce long lasting cognitive dysfunction. There is typically no cell death and only diffuse structural injury after mTBI. Thus, functional changes in intact neurons may contribute to symptoms.
View Article and Find Full Text PDFInjured axons with distinct morphologies have been found following mild traumatic brain injury (mTBI), although it is currently unclear whether they reflect varied responses to the injury or represent different stages of progressing pathology. This complicates evaluation of therapeutic interventions targeting axonal injury. To address this issue, we assessed axonal injury over time within a well-defined axonal population, while also evaluating mitochondrial permeability transition as a therapeutic target.
View Article and Find Full Text PDFTraumatic axonal injury (TAI) is a consistent component of traumatic brain injury (TBI), and is associated with much of its morbidity. Increasingly, it has also been recognized as a major pathology of mild TBI (mTBI). In terms of its pathogenesis, numerous studies have investigated the susceptibility of the nodes of Ranvier, the paranode and internodal regions to TAI.
View Article and Find Full Text PDFMild traumatic brain injury (mTBI) often produces lasting detrimental effects on cognitive processes. The mechanisms underlying neurological abnormalities have not been fully identified, in part due to the diffuse pathology underlying mTBI. Here we employ a mouse model of mTBI that allows for identification of both axotomized and intact neurons in the living cortical slice via neuronal expression of yellow fluorescent protein.
View Article and Find Full Text PDFTraumatic axonal injury (TAI) is a consistent component of traumatic brain injury (TBI) and is associated with much of its morbidity. Little is known regarding the long-term retrograde neuronal consequences of TAI and/or the potential that TAI could lead to anterograde axonal reorganization and repair. To investigate the repertoire of anterograde and retrograde responses triggered by TIA, Thy1-YFP-H mice were subjected to mild central fluid percussion injury and killed at various times between 15 min and 28 d post-injury.
View Article and Find Full Text PDFA high membrane-to-cytoplasm ratio makes axons particularly vulnerable to traumatic injury. Posttraumatic shifts in ionic homeostasis promote spectrin cleavage, disrupt ankyrin linkages and destabilize axolemmal proteins. This study contrasted ankyrin-G and αII-spectrin degradation in cortex and corpus callosum following diffuse axonal injury produced by fluid percussion insult.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2010
During the course of evolution, a massive reduction of the mitochondrial genome content occurred that was associated with transfer of a large number of genes to the nucleus. To further characterize factors that control the mitochondrial gene transfer/retention process, we have investigated the barriers to transfer of yeast COX2, a mitochondrial gene coding for a subunit of cytochrome c oxidase complex. Nuclear-recoded Saccharomyces cerevisiae COX2 fused at the amino terminus to various alternative mitochondrial targeting sequences (MTS) fails to complement the growth defect of a yeast strain with an inactivated mitochondrial COX2 gene, even though it is expressed in cells.
View Article and Find Full Text PDF