Computational methods, such as the linear parametric neurotransmitter PET (lp-ntPET) method, have been developed to characterize the transient changes in radiotracer kinetics in the target tissue during endogenous neurotransmitter release. In this paper, we describe and evaluate a parametric reconstruction algorithm that uses an expectation maximization framework, along with the lp-ntPET model, to estimate the endogenous neurotransmitter response to stimuli directly from the measured PET data. Computer simulations showed that the proposed direct reconstruction method offers improved accuracy and precision for the estimated timing parameters of the neurotransmitter response at the voxel level ( t=1±2 min, for activation onset bias and standard deviation) compared with conventional post reconstruction modeling ( t=4±7 min).
View Article and Find Full Text PDFIn emission tomographic imaging, the stochastic origin ensembles algorithm provides unique information regarding the detected counts given the measured data. Precision in both voxel and region-wise parameters may be determined for a single data set based on the posterior distribution of the count density allowing uncertainty estimates to be allocated to quantitative measures. Uncertainty estimates are of particular importance in awake animal neurological and behavioral studies for which head motion, unique for each acquired data set, perturbs the measured data.
View Article and Find Full Text PDFImage space decomposition based on tetrahedral voxels are interesting candidates for use in emission tomography. Tetrahedral voxels provide many of the advantages of point clouds with irregular spacing, such as being intrinsically multi-resolution, yet they also serve as a volumetric partition of the image space and so are comparable to more standard cubic voxels. Additionally, non-rigid displacement fields can be applied to the tetrahedral mesh in a straight-forward manner.
View Article and Find Full Text PDFIn order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification.
View Article and Find Full Text PDFThe development of novel detection devices and systems such as the AX-positron emission tomography (PET) demonstrator often introduce or increase the measurement of atypical coincidence events such as inter-crystal scattering (ICS). In more standard systems, ICS events often go undetected and the small measured fraction may be ignored. As the measured quantity of such events in the data increases, so too does the importance of considering them during image reconstruction.
View Article and Find Full Text PDF