Publications by authors named "John E Erickson"

Land application of biochar reportedly provides many benefits, including reduced risk of nutrient transport, greenhouse gas (GHG) emission mitigation, and increased soil C storage, but additional field validation is needed. We evaluated the effectiveness of biochar in controlling the lability of nutrients in agricultural land. This study was designed to evaluate the impacts of biochar co-applied with various N and P sources on GHG fluxes from a subtropical grassland.

View Article and Find Full Text PDF

Despite the numerous benefits of biosolids, concerns over nutrient losses restrict the extent to which biosolids can be beneficially reused. We evaluated the effectiveness of biochar in controlling the lability of nutrients in agricultural land. This study was designed to investigate the potential impacts of co-applying biochar with biosolids or inorganic fertilizer on N and P leaching losses.

View Article and Find Full Text PDF

Recent evidence suggests an upward trend in surface water phosphorus (P) concentrations in many segments of Florida, including the upper basin of the St. Johns River, a region that currently receives about two-thirds of the state Class B biosolids land application. Concerns about water quality in this area are encouraging reexamination of the regulations governing biosolids programs.

View Article and Find Full Text PDF

Genetic improvement for stress tolerance requires a solid understanding of biochemical processes involved with different physiological mechanisms and their relationships with different traits. The objective of this study was to demonstrate genetic variability in altered metabolic levels in a panel of six wheat genotypes in contrasting temperature regimes, and to quantify the correlation between those metabolites with different traits. In a controlled environment experiment, heat stress (35:28 ± 0.

View Article and Find Full Text PDF

Three factors that directly affect the water inputs in cropping systems are root architecture, length of the growing season, and stomatal conductance to water vapor (). Deeper-rooted cultivars will perform better under water-limited conditions because they can access water stored deeper in the soil profile. Reduced limits transpiration rate () and thus throughout the vegetative phase conserves water that may be used during grain filling in water-limited environments.

View Article and Find Full Text PDF

In this study, a moderate thermophile Clostridium thermobutyricum is shown to ferment the sugars in sweet sorghum juice treated with invertase and supplemented with tryptone (10 g L(-1)) and yeast extract (10 g L(-1)) at 50°C to 44 g L(-1) butyrate at a calculated highest volumetric productivity of 1.45 g L(-1)h(-1) (molar butyrate yield of 0.85 based on sugars fermented).

View Article and Find Full Text PDF

Drought is one of the most widespread stresses leading to retardation of plant growth and development. We examined proteome changes of an important oil seed crop, canola (Brassica napus L.), under drought stress over a 14-day period.

View Article and Find Full Text PDF

The rapid increase in atmospheric CO2 concentrations (Ca ) has resulted in extensive research efforts to understand its impact on terrestrial ecosystems, especially carbon balance. Despite these efforts, there are relatively few data comparing net ecosystem exchange of CO2 between the atmosphere and the biosphere (NEE), under both ambient and elevated Ca . Here we report data on annual sums of CO2 (NEE(net) ) for 19 years on a Chesapeake Bay tidal wetland for Scirpus olneyi (C3 photosynthetic pathway)- and Spartina patens (C4 photosynthetic pathway)-dominated high marsh communities exposed to ambient and elevated Ca (ambient + 340 ppm).

View Article and Find Full Text PDF

The agronomic performance, cell wall characteristics and enzymatic saccharification efficiency of transgenic sugarcane plants with modified lignin were evaluated under replicated field conditions. Caffeic acid O-methyltransferase (COMT) was stably suppressed by RNAi in the field, resulting in transcript reduction of 80%-91%. Along with COMT suppression, total lignin content was reduced by 6%-12% in different transgenic lines.

View Article and Find Full Text PDF

N acquisition often lags behind accelerated C gain in plants exposed to CO2-enriched atmospheres. To help resolve the causes of this lag, we considered its possible link with stomatal closure, a common first-order response to elevated CO2 that can decrease transpiration. Specifically, we tested the hypothesis that declines in transpiration, and hence mass flow of soil solution, can decrease delivery of mobile N to the root and thereby limit plant N acquisition.

View Article and Find Full Text PDF