Exp Biol Med (Maywood)
February 2008
The ability to sense intracellular or intraorganellar reduction/oxidation conditions would provide a powerful tool for studying normal cell proliferation, differentiation, and apoptosis. Genetically encoded biosensors enable monitoring of the intracellular redox environment. We report the development of chimeric polypeptides useful as redox-sensitive linkers in conjunction with Förster resonance energy transfer (FRET).
View Article and Find Full Text PDFThis work describes the use of microfluidic tools to generate covalently immobilized counter gradients of extracellular matrix (ECM) proteins laminin and collagen I. Using these platforms, we demonstrate control of the expression levels of two proteins linked to cell cycle progression by virtue of the spatial location of cells on the gradients, and hence by the local ECM environments in these devices. In contrast to physisorbed gradients, covalently immobilized protein patterns preserved the gradient fidelity, making long term cell studies feasible.
View Article and Find Full Text PDF