Publications by authors named "John E Beasley"

Motivation: Elementary flux modes (EFMs) analysis constitutes a fundamental tool in systems biology. However, the efficient calculation of EFMs in genome-scale metabolic networks (GSMNs) is still a challenge. We present a novel algorithm that uses a linear programming-based tree search and efficiently enumerates a subset of EFMs in GSMNs.

View Article and Find Full Text PDF

With the emergence of metabolic networks, novel mathematical pathway concepts were introduced in the past decade, aiming to go beyond canonical maps. However, the use of network-based pathways to interpret 'omics' data has been limited owing to the fact that their computation has, until very recently, been infeasible in large (genome-scale) metabolic networks. In this review article, we describe the progress made in the past few years in the field of network-based metabolic pathway analysis.

View Article and Find Full Text PDF

Background: The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling.

Results: We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data.

View Article and Find Full Text PDF

Motivation: Pathway analysis tools are a powerful strategy to analyze 'omics' data in the field of systems biology. From a metabolic perspective, several pathway definitions can be found in the literature, each one appropriate for a particular study. Recently, a novel pathway concept termed carbon flux paths (CFPs) was introduced and benchmarked against existing approaches, showing a clear advantage for finding linear pathways from a given source to target metabolite.

View Article and Find Full Text PDF

Graph-based methods have been widely used for the analysis of biological networks. Their application to metabolic networks has been much discussed, in particular noting that an important weakness in such methods is that reaction stoichiometry is neglected. In this study, we show that reaction stoichiometry can be incorporated into path-finding approaches via mixed-integer linear programming.

View Article and Find Full Text PDF

Motivation: Elementary flux modes (EFMs) represent a key concept to analyze metabolic networks from a pathway-oriented perspective. In spite of considerable work in this field, the computation of the full set of elementary flux modes in large-scale metabolic networks still constitutes a challenging issue due to its underlying combinatorial complexity.

Results: In this article, we illustrate that the full set of EFMs can be enumerated in increasing order of number of reactions via integer linear programming.

View Article and Find Full Text PDF

Advances in the field of genomics have enabled computational analysis of metabolic pathways at the genome scale. Singular attention has been devoted in the literature to stoichiometric approaches, and path-finding approaches, to metabolic pathways. Stoichiometric approaches make use of reaction stoichiometry when trying to determine metabolic pathways.

View Article and Find Full Text PDF

A metabolic pathway is a coherent set of enzyme catalysed biochemical reactions by which a living organism transforms an initial (source) compound into a final (target) compound. Some of the different metabolic pathways adopted within organisms have been experimentally determined. In this paper, we show that a number of experimentally determined metabolic pathways can be recovered by a mathematical optimization model.

View Article and Find Full Text PDF