Oral Maxillofac Surg Clin North Am
February 2002
The development of minimally invasive therapeutics for orthopedic clinical conditions has substantial benefits, especially for osteoporotic fragility fractures and vertebral compression fractures. Poly(ester urethane)urea (PEUUR) foams are potentially useful for addressing these conditions because they cure in situ upon injection to form porous scaffolds. In this study, the effects of water concentration and polyester triol composition on the physicochemical, mechanical, and biological properties of PEUUR foams were investigated.
View Article and Find Full Text PDFBackground: Standard approaches to soft-tissue reconstruction include autologous tissue flaps and alloplastic implants. Both of these approaches have disadvantages, including donor-site morbidity, implant migration, and foreign body reaction. Autologous fat transplantation, with a minimally invasive cannula harvest, has lower donor-site morbidity than tissue flaps do, but there is an unpredictable degree of resorption of the transplanted fat over time.
View Article and Find Full Text PDFBackground: Considering that little is known about the peripheral nerve regenerative capacity of elderly patients, the authors studied nerve regenerative capacity in aged rats and compared the effect of three synthetic nerve guides with different material characteristics and porosity. The authors hypothesized that the use of a biodegradable composite nerve guide (CultiGuides) would promote nerve regeneration and functional recovery in a manner similar to treatment with autografts or U.S.
View Article and Find Full Text PDFThe clinical management of skeletal trauma and disease relies on radiographic imaging to infer bone quality. However, bone strength does not necessarily correlate well with image intensity. There is a need for a safe and convenient way to measure bone strength in situ.
View Article and Find Full Text PDFMelatonin's therapeutic potential is grossly underestimated because its functional roles are diverse and its mechanism(s) of action are complex and varied. Melatonin produces cellular effects via a variety of mechanisms in a receptor independent and dependent manner. In addition, melatonin is a chronobiotic agent secreted from the pineal gland during the hours of darkness.
View Article and Find Full Text PDFThe development of therapeutics for orthopedic clinical indications exploiting minimally invasive surgical techniques has substantial benefits, especially for treatment of fragility fractures in the distal radius of osteoporotics and vertebral compression fractures. We have designed six formulations of injectable polyurethane foams to address these clinical indications. The polyurethanes were prepared by mixing two liquid components and injecting the reactive liquid mixture into a mold where it hardens in situ.
View Article and Find Full Text PDFMany polyurethane elastomers display excellent mechanical properties and adequate biocompatibility. However, many medical-grade polyurethanes are prepared from aromatic diisocyanates and can degrade in vivo to carcinogenic aromatic diamines, although the question of whether the concentrations of these harmful degradation products attain physiologically relevant levels is currently unresolved and strongly debated. It is therefore desirable to synthesize new medical-grade polyurethanes from less toxic aliphatic diisocyanates.
View Article and Find Full Text PDFThe goals of this study were to determine (a) if melatonin enhances human adult mesenchymal stem cell (hAMSC) differentiation into osteoblasts as assessed by measuring alkaline phosphatase (ALP) enzyme activity, and (b) identify potential signal transduction pathways that mediate this process. ALP activity significantly increased in hAMSCs following a 10-day incubation in osteogenic medium, relative to hAMSCs incubated in basal growth medium alone. Melatonin (50 nm), added in combination with the osteogenic medium, significantly increased ALP activity relative to osteogenic medium alone.
View Article and Find Full Text PDFTissue-engineered nerve guides can provide mechanical support as well as chemical stimulation for nerve regeneration. PC12 cells were used to test the novel combination of poly(caprolactone) (PCL) and macroporous collagen-based microcarriers (CultiSphers) as an initial phase in the fabrication of multichanneled nerve guides. Laminin-coated PCL was an effective matrix for the attachment, proliferation, and viability of PC12 cells, relative to uncoated PCL.
View Article and Find Full Text PDFInnovative methods to fabricate porous, biodegradable conduits were developed to produce nerve guides with multiple longitudinally aligned channels. The geometry of the nerve guide's channels was designed to be appropriate for harboring neurite extension. Both the coated mandrel and mandrel adhesion techniques permit flexibility in the number of channels, channel organization, and channel diameters.
View Article and Find Full Text PDF