Publications by authors named "John Dishinger"

This work describes a convenient one-hour enzyme-linked immunosorbent assay (ELISA) formulated with conventional antibodies and horseradish peroxidase (HRP) reagents. The method utilizes aqueous two-phase system (ATPS) droplet formation based on poly(ethylene glycol) (PEG)-containing sample solution-triggered rehydration of dehydrated dextran (DEX) spots that contain all antibody reagents. Key advances in this paper include development of a formulation that allows a quick 1-hour overall incubation time and a procedure where inclusion of the HRP reagent in the PEG solution reduces the number of washing and incubation steps required to perform this assay.

View Article and Find Full Text PDF

Multiplex immunoassays are rapidly increasing in popularity due to the offered advantages of increased throughput and decreased sample volume requirements. However, a major weakness inherent to multiplex enzyme-linked immunosorbent assays (ELISA) is generation of false signals through reagent-driven cross-talk. Typically, multiplex platforms necessitate bath application of antibody cocktails, increasing probability of nonspecific antibody binding, especially when multiplexing large numbers of analytes.

View Article and Find Full Text PDF

As a cellular organelle, the cilium contains a unique protein composition. Entry of both membrane and cytosolic components is tightly regulated by gating mechanisms at the cilium base; however, the mechanistic details of ciliary gating are largely unknown. We previously proposed that entry of cytosolic components is regulated by mechanisms similar to those of nuclear transport and is dependent on nucleoporins (NUPs), which comprise a ciliary pore complex (CPC).

View Article and Find Full Text PDF

Cilia and flagella are microtubule-based organelles that play important roles in human health by contributing to cellular motility as well as sensing and responding to environmental cues. Defects in cilia formation and function cause a broad class of human genetic diseases called ciliopathies. To carry out their specialized functions, cilia contain a unique complement of proteins that must be imported into the ciliary compartment.

View Article and Find Full Text PDF

We have previously reported that the absence of leptin signaling in β-cells enhances glucose-stimulated insulin secretion and improves glucose tolerance in vivo. To investigate the relevance of β-cell leptin signaling in the context of postprandial or therapeutic insulin secretion, we examined the cross talk between leptin and glucagon-like peptide (GLP)-1 and sulfonylurea actions. Single and size-matched islets isolated from control or pancreas-specific leptin receptor knockout (pancreas-ObR-KO) mice were treated either with GLP-1 or with glibenclamide.

View Article and Find Full Text PDF

The cilium is a microtubule-based organelle that contains a unique complement of proteins for cell motility and signalling functions. Entry into the ciliary compartment is proposed to be regulated at the base of the cilium. Recent work demonstrated that components of the nuclear import machinery, including the Ran GTPase and importins, regulate ciliary entry.

View Article and Find Full Text PDF

The small GTPase Ran and the importin proteins regulate nucleocytoplasmic transport. New evidence suggests that Ran GTP and the importins are also involved in conveying proteins into cilia. In this study, we find that Ran GTP accumulation at the basal bodies is coordinated with the initiation of ciliogenesis.

View Article and Find Full Text PDF

Cilia and flagella play important roles in human health by contributing to cellular motility as well as sensing and responding to environmental cues. Defects in ciliary assembly and/or function can lead to a range of human diseases, collectively known as the ciliopathies, including polycystic kidney, liver and pancreatic diseases, sterility, obesity, situs inversus, hydrocephalus and retinal degeneration. A basic understanding of how cilia form and function is essential for deciphering ciliopathies and generating therapeutic treatments.

View Article and Find Full Text PDF

The biogenesis, maintenance and function of primary cilia are controlled through intraflagellar transport (IFT) driven by two kinesin-2 family members, the heterotrimeric KIF3A/KIF3B/KAP complex and the homodimeric KIF17 motor. How these motors and their cargoes gain access to the ciliary compartment is poorly understood. Here, we identify a ciliary localization signal (CLS) in the KIF17 tail domain that is necessary and sufficient for ciliary targeting.

View Article and Find Full Text PDF

We reported previously that islets isolated from individual, outbred Swiss-Webster mice displayed oscillations in intracellular calcium ([Ca2+](i)) that varied little between islets of a single mouse but considerably between mice, a phenomenon we termed "islet imprinting." We have now confirmed and extended these findings in several respects. First, imprinting occurs in both inbred (C57BL/6J) as well as outbred mouse strains (Swiss-Webster; CD1).

View Article and Find Full Text PDF

Quantification of insulin release from pancreatic islets of Langerhans is of interest for diabetes research. Typical insulin secretion experiments are performed using offline techniques that are expensive, slow, have low-throughput, and require multiple islets. We have developed a microfluidic device for high-throughput, automated, and online monitoring of insulin secretion from individual islets in parallel.

View Article and Find Full Text PDF

Much work has been performed since the development of the lab-on-a-chip concept that has brought microfabricated systems to the forefront of bioanalytical research. The success of using these microchips for performing complicated biological assays faster and cheaper than conventional methods has facilitated their emerging popularity among researchers. A recently exploited advantage of microfabricated technology has led to the creation of single wafers with multiple channel manifolds for high-throughput experiments.

View Article and Find Full Text PDF

A microfluidic chip consisting of parallel channels designed for rapid electrophoretic enzyme assays was developed. Radial arrangement of channels and a common waste channel allowed chips with 16 and 36 electrophoresis units to be fabricated on a 7.62 x 7.

View Article and Find Full Text PDF

Obesity is characterized by hyperinsulinemia, hyperleptinemia, and an increase in islet volume. While the mechanisms that hasten the onset of diabetes in obese individuals are not known, it is possible that the adipose-derived hormone leptin plays a role. In addition to its central actions, leptin exerts biological effects by acting in peripheral tissues including the endocrine pancreas.

View Article and Find Full Text PDF

A microfluidic chip that allows for the continuous monitoring of cellular secretions from multiple independent living samples was developed. Performance of the device was characterized through the analysis of insulin secretion from islets of Langerhans. The chip contained four individual channel networks, each capable of performing electrophoresis-based immunoassays of the perfusate from islets.

View Article and Find Full Text PDF