A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFAntibiotic combination therapy is promising for the treatment of lower respiratory tract infections caused by multi-drug resistant Gram-negative pathogens. Inhaled antibiotic therapy offers the advantage of direct delivery of the drugs to the site of infection, as compared to the parenteral administrations. In this study, we developed composite particle formulations of colistin and meropenem.
View Article and Find Full Text PDFThis study aimed to develop dry powder particles with surfaces enriched in hydrophobic material by manipulation of spray-drying conditions and to investigate the effect of hydrophobic surface enrichment on aerosolization of hygroscopic drug. The composite dry powder formulations of kanamycin (hygroscopic drug) and rifampicin (hydrophobic drug) were produced by systematically (2 full factorial design) varying the drug ratio, co-solvent composition and inlet temperature using Buchi B-290 Mini Spray-Dryer. All the composite powder particles were inhalable in size (3.
View Article and Find Full Text PDFHigh dose delivery of drugs to the lung using a dry powder inhaler (DPI) is an emerging approach to combat drug-resistant local infections. To achieve this, highly aerosolizable powders are required. We hypothesized that co-spray-drying kanamycin, a hydrophilic hygroscopic antibiotic, with rifampicin, a hydrophobic antibiotic, would produce inhalable particles with surfaces enriched in rifampicin.
View Article and Find Full Text PDFBackground: Inhalable particles containing amorphous form of drugs or excipients may absorb atmospheric moisture, causing powder aggregation and recrystallization, adversely affecting powder dispersion and lung deposition. The present study aims to explore hydrophobic amino acids for protection against moisture in spray-dried amorphous powders, using disodium cromoglycate (DSCG) as a model drug.
Materials And Methods: DSCG powders were produced by co-spray drying with isoleucine (Ile), valine (Val) and methionine (Met) in various concentrations (10, 20 and 40%w/w).
This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder.
View Article and Find Full Text PDFAerosolisation performance of hygroscopic particles of colistin could be compromised at elevated humidity due to increased capillary forces. Co-spray drying colistin with a hydrophobic drug is known to provide a protective coating on the composite particle surfaces against moisture-induced reduction in aerosolisation performance; however, the effects of component ratio on surface coating quality and powder aerosolisation at elevated relative humidities are unknown. In this study, we have systematically examined the effects of mass ratio of hydrophobic azithromycin on surface coating quality and aerosolisation performance of the co-spray dried composite particles.
View Article and Find Full Text PDFAlkaline polyphosphate has been demonstrated to be able to reduce significant wear and friction of sliding interfaces under heavy loads (>1 GPa) and elevated temperature (800 °C and above) conditions, e.g. hot metal manufacturing.
View Article and Find Full Text PDFL-Leucine (LL) has been widely used to enhance the dispersion performance of powders for inhalation. LL can also protect powders against moisture, but this effect is much less studied. The aim of this study was to investigate whether LL could prevent moisture-induced deterioration in in vitro aerosolization performances of highly hygroscopic spray-dried powders.
View Article and Find Full Text PDFColistin is often the only effective antibiotic against the respiratory infections caused by multidrug-resistant Gram-negative bacteria. However, colistin-resistant multidrug-resistant isolates have been increasingly reported and combination therapy is preferred to combat resistance. In this study, five combination formulations containing colistin (COL) and rifampicin (RIF) were prepared by spray drying.
View Article and Find Full Text PDFTime-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) surface analysis was conducted to characterise deposits in polyethylene pipes used in a novel pilot water distribution system (PDS). The system consisted of four (4) parallel distribution systems receiving water from different treatment processes, ranging from conventional coagulation through to an advanced membrane filtration system. After two years of operation, the distribution system was shut down and samples of pipe were collected for autopsy analysis.
View Article and Find Full Text PDFThe performance of biomaterials in a biological environment is largely influenced by the surface properties of the biomaterials. In particular, grafted targeting ligands significantly impact the subsequent cellular interactions. The utilisation of a grafted epidermal growth factor (EGF) is effective for targeted delivery of drugs to tumours, but the amount of these biological attachments cannot be easily quantified as most characterization methods could not detect the extremely low amount of EGF ligands grafted on the surface of nanoparticles.
View Article and Find Full Text PDFThis study investigates the effects of a variety of coating materials on the flowability and dissolution of dry-coated cohesive ibuprofen powders, with the ultimate aim to use these in oral dosage forms. A mechanofusion approach was employed to apply a 1% (w/w) dry coating onto ibuprofen powder with coating materials including magnesium stearate (MgSt), L-leucine, sodium stearyl fumarate (SSF) and silica-R972. No significant difference in particle size or shape was measured following mechanofusion with any material.
View Article and Find Full Text PDFThe amino acid L-leucine has been demonstrated to act as a lubricant and improve the dispersibility of otherwise cohesive fine particles. It was hypothesized that optimum surface L-leucine concentration is necessary to achieve optimal surface and bulk powder properties. Polyvinylpyrrolidone was spray dried with different concentration of L-leucine and the change in surface composition of the formulations was determined using X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectrometry (ToF-SIMS).
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2014
A robust and flexible approach is described for the straightforward preparation of multicellular tumor spheroids of controllable dimensions. The approach is based on a one-step plasma polymerization of the monomer allylamine carried out through conformal micropatterning physical masks that is used to deposit amine-rich (PolyAA) micrometer-scale features that promote cellular attachment and initiate the formation of multicellular spheroids. A simple backfilling step of the nonpolymerized poly(dimethylsiloxane) background with Pluronic F127 significantly reduced background cellular adhesion on the untreated substrate and, in turn, improved the quality of the spheroid formed.
View Article and Find Full Text PDFIntensive dry powder coating (mechanofusion) with tablet lubricants has previously been shown to give substantial powder flow improvement. This study explores whether the mechanofusion of magnesium stearate (MgSt), on a fine drug powder can substantially improve flow, without preventing the powder from being directly compacted into tablets. A fine ibuprofen powder, which is both cohesive and possesses a low-melting point, was dry coated via mechanofusion with between 0.
View Article and Find Full Text PDFFor many respiratory infections caused by multidrug-resistant Gram-negative bacteria, colistin is the only effective antibiotic despite its nephrotoxicity. A novel inhaled combination formulation of colistin with a synergistic antimicrobial component of rifampicin was prepared via co-spray drying, aiming to deliver the drug directly to the respiratory tract and minimize drug resistance and adverse effects. Synergistic antibacterial activity against Acinetobacter baumannii was demonstrated for the combination formulation with high emitted doses (96%) and fine particle fraction total (FPFtotal; 92%).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2013
The surface immobilization of proteins is an emerging field with applications in a wide range of important areas: biomedical devices, disease diagnosis, biosensing, food processing, biofouling, and bioreactors. Proteins, in Nature, often work synergistically, as in the important enzyme mixture, cellulase. It is necessary to preserve these synergies when utilizing surface immobilized proteins.
View Article and Find Full Text PDFTreatment for tuberculosis (TB) using the standard oral antibiotic regimen is effective but inefficient, requiring high drug dosing and lengthy treatment times. Three concurrent first-line antibiotics recommended by the World Health Organization (WHO) guidelines are pyrazinamide, rifampicin and isoniazid. Combining these antibiotics in a novel formulation for dry powder inhalation (DPI) may facilitate rapid and efficient resolution of local and systemic infection.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are promising alternatives to current treatments for bacterial infections. However, our understanding of the structural-functional relationship of tethered AMPs still requires further investigation to establish a general approach for obtaining consistent antimicrobial surfaces. In this study, we have systematically examined the effects of surface orientation of a broad-spectrum synthetic cationic peptide, melimine, on its antibacterial activity against Gram-positive and Gram-negative bacteria.
View Article and Find Full Text PDFThe objective of this study was to investigate if the coating extent created by a mechanofusion process corresponded with observed changes in bulk powder properties. A fine lactose powder (approximate median diameter 20 μm) was dry coated with magnesium stearate using from 0.1 to 5% (w/w) content.
View Article and Find Full Text PDFThe aim of this study is to investigate the changes in physical and chemical surface properties of a fine lactose powder, which has been processed by a mechanical dry coating approach. A commercially available milled lactose monohydrate powder (median diameter around 20 μm) was dry coated with a pharmaceutical lubricant, magnesium stearate (MgSt). Substantial changes in bulk behavior have been shown previously and the purpose of the current work was to understand the relationship between these bulk changes and physico-chemical changes in the surface.
View Article and Find Full Text PDFWe demonstrate the application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) in conjunction with multivariate statistics to differentiate trace levels of denatured proteins in adsorbed monolayers; specifically, human serum albumin (HSA) on oxidized silicon substrates. Subtle differences in protein conformation due to thermal denaturation of HSA, unable to be determined by dynamic light scattering nor circular dichroism, were differentiated by TOF-SIMS. The fragmentation pattern is highly sensitive to protein conformation, allowing assessment of relative amounts of proteins in mixtures and quantifying amounts of denatured protein in a sample.
View Article and Find Full Text PDFAdvances in the technology employed for the manufacture of glass have resulted in a final glass product with little variability in terms of its physical and optical properties. For example, the refractive index of Australian float glass tends to lie between 1.5189 and 1.
View Article and Find Full Text PDF