Publications by authors named "John Danzer"

We used an RNA interference screen to assay the function of 53 transcription factor messenger RNAs (mRNAs) that accumulate specifically within soybean (Glycine max) seed regions, subregions, and tissues during development. We show that basic helix-loop-helix (bHLH) transcription factor genes represented by Glyma04g41710 and its paralogs are required for the formation of stoma in leaves and stomatal precursor complexes in mature embryo cotyledons. Phylogenetic analysis indicates that these bHLH transcription factor genes are orthologous to Arabidopsis (Arabidopsis thaliana) SPEECHLESS (SPCH) that initiate asymmetric cell divisions in the leaf protoderm layer and establish stomatal cell lineages.

View Article and Find Full Text PDF

The yeast Sir1 protein's ability to bind and silence the cryptic mating-type locus HMRa requires a protein-protein interaction between Sir1 and the origin recognition complex (ORC). A domain within the C-terminal half of Sir1, the Sir1 ORC interaction region (Sir1OIR), and the conserved bromo-adjacent homology (BAH) domain within Orc1, the largest subunit of ORC, mediate this interaction. The structure of the Sir1OIR-Orc1BAH complex is known.

View Article and Find Full Text PDF

Sir3p is a silent-information-regulator (SIR) protein required for the assembly of a transcriptionally "silent" chromatin structure at telomeres and the cryptic HM mating-type loci in Saccharomyces cerevisiae. Sir3p contains a putative "bromo adjacent homology" (BAH) domain at its N terminus that shares strong sequence similarity with the BAH domain of a subunit of the origin recognition complex (ORC), Orc1p. The Orc1p-BAH domain forms a well-defined complex with the ORC interaction region (OIR) of another Sir protein, Sir1p, which targets formation of silent chromatin to the HM-loci.

View Article and Find Full Text PDF

Heterochromatin Protein 1 (HP1) is a structural component of silent chromatin at telomeres and centromeres. Euchromatic genes repositioned near heterochromatin by chromosomal rearrangements are typically silenced in an HP1-dependent manner. Silencing is thought to involve the spreading of heterochromatin proteins over the rearranged genes.

View Article and Find Full Text PDF

Heterochromatin protein 1 (HP1) is a conserved non-histone chromosomal protein enriched in heterochromatin. On Drosophila polytene chromosomes, HP1 localizes to centric and telomeric regions, along the fourth chromosome, and to specific sites within euchromatin. HP1 associates with centric regions through an interaction with methylated lysine nine of histone H3, a modification generated by the histone methyltransferase SU(VAR)3-9.

View Article and Find Full Text PDF