Publications by authors named "John Daniel Berrigan"

The freeform generation of active electronics can impart advanced optical, computational, or sensing capabilities to an otherwise passive construct by overcoming the geometrical and mechanical dichotomies between conventional electronics manufacturing technologies and a broad range of three-dimensional (3D) systems. Previous work has demonstrated the capability to entirely 3D print active electronics such as photodetectors and light-emitting diodes by leveraging an evaporation-driven multi-scale 3D printing approach. However, the evaporative patterning process is highly sensitive to print parameters such as concentration and ink composition.

View Article and Find Full Text PDF

Liquid crystalline hydrogels are an attractive class of soft materials to direct charge transport, mechanical actuation, and cell migration. When such systems contain supramolecular polymers, it is possible in principle to easily shear align nanoscale structures and create bulk anisotropic properties. However, reproducibly fabricating and patterning aligned supramolecular domains in 3D hydrogels remains a challenge using conventional fabrication techniques.

View Article and Find Full Text PDF

Hybrid 3D printing is a new method for producing soft electronics that combines direct ink writing of conductive and dielectric elastomeric materials with automated pick-and-place of surface mount electronic components within an integrated additive manufacturing platform. Using this approach, insulating matrix and conductive electrode inks are directly printed in specific layouts. Passive and active electrical components are then integrated to produce the desired electronic circuitry by using an empty nozzle (in vacuum-on mode) to pick up individual components, place them onto the substrate, and then deposit them (in vacuum-off mode) in the desired location.

View Article and Find Full Text PDF