Publications by authors named "John Damuth"

Much of the focus in evolutionary biology has been on the adaptive differentiation among organisms. It is equally important to understand the processes that result in similarities of structure among systems. Here, we discuss examples of similarities occurring at different ecological scales, from predator-prey relations (attack rates and handling times) through communities (food-web structures) to ecosystem properties.

View Article and Find Full Text PDF

High-crowned (hypsodont) teeth are widely found among both extant and extinct mammalian herbivores. Extant grazing ungulates (hoofed mammals) have hypsodont teeth (a derived condition), and so extinct hypsodont forms have usually been presumed to have been grazers. Thus, hypsodonty among ungulates has, over the past 150 years, formed the basis of widespread palaeoecological interpretations, and has figured prominently in the evolutionary study of the spread of grasslands in the mid Cenozoic.

View Article and Find Full Text PDF

We outline here an approach for understanding the biology of climate change, one that integrates data at multiple spatial and temporal scales. Taxon-free trait analysis, or "ecometrics," is based on the idea that the distribution in a community of ecomorphological traits such as tooth structure, limb proportions, body mass, leaf shape, incubation temperature, claw shape, any aspect of anatomy or physiology can be measured across some subset of the organisms in a community. Regardless of temporal or spatial scale, traits are the means by which organisms interact with their environment, biotic and abiotic.

View Article and Find Full Text PDF

Climate change research is increasingly focusing on the dynamics among species, ecosystems and climates. Better data about the historical behaviours of these dynamics are urgently needed. Such data are already available from ecology, archaeology, palaeontology and geology, but their integration into climate change research is hampered by differences in their temporal and geographical scales.

View Article and Find Full Text PDF

It has been known for decades that the metabolic rate of animals scales with body mass with an exponent that is almost always <1, >2/3, and often very close to 3/4. The 3/4 exponent emerges naturally from two models of resource distribution networks, radial explosion and hierarchically branched, which incorporate a minimum of specific details. Both models show that the exponent is 2/3 if velocity of flow remains constant, but can attain a maximum value of 3/4 if velocity scales with its maximum exponent, 1/12.

View Article and Find Full Text PDF

One of Robert May's classic results was finding that population dynamics become chaotic when the average lifetime rate of reproduction exceeds a certain value. Populations whose reproductive rates exceed this May threshold probably become extinct. The May threshold in each case depends upon the shape of the density-dependence curve, which differs among models of population growth.

View Article and Find Full Text PDF

Much of the debate about alternative scaling exponents may result from unawareness of the dimensionality appropriate for different data and questions; in some cases, analysis has to include a fourth temporal dimension, and in others, it does not. Proportional scaling simultaneously applied to an organism and its generation time, treating the latter as a natural fourth dimension, produces a simple explanation for the 3/4 power in large-scale interspecies comparisons. Analysis of data sets of reduced dimensionality (e.

View Article and Find Full Text PDF

Across a wide array of animal species, mean population densities decline with species body mass such that the rate of energy use of local populations is approximately independent of body size. This "energetic equivalence" is particularly evident when ecological population densities are plotted across several or more orders of magnitude in body mass and is supported by a considerable body of evidence. Nevertheless, interpretation of the data has remained controversial, largely because of the difficulty of explaining the origin and maintenance of such a size-abundance relationship in terms of purely ecological processes.

View Article and Find Full Text PDF

Scaling provides an elegant framework for understanding power-law behavior and deducing relationships between critical exponents. We demonstrate that scaling theory can be generalized to develop a framework for the analysis of diverse empirical macroecological relationships traditionally treated as independent. Our mathematical arguments predict links between the species-area relationship, the relative species abundance and community size spectra in excellent accord with empirical data.

View Article and Find Full Text PDF

Over the past 50 million years, successive clades of large carnivorous mammals diversified and then declined to extinction. In most instances, the cause of the decline remains a puzzle. Here we argue that energetic constraints and pervasive selection for larger size (Cope's rule) in carnivores lead to dietary specialization (hypercarnivory) and increased vulnerability to extinction.

View Article and Find Full Text PDF

As stated by the island rule, small mammals evolve toward gigantism on islands. In addition they are known to evolve faster than their mainland counterparts. Body size in island mammals may also be influenced by geographical climatic gradients or climatic change through time.

View Article and Find Full Text PDF

It is widely accepted that metabolic rates scale across species approximately as the 3/4 power of mass in most if not all groups of organisms. Metabolic demand per unit mass thus decreases as body mass increases. Metabolic rates reflect both the ability of the organism's transport system to deliver metabolites to the tissues and the rate at which the tissues use them.

View Article and Find Full Text PDF

The unit that directly evolves under the action of higher-level natural selection "among species" must be the higher-level analogue of the population. Contrary to present formulations of "species selection," clades (or other higher taxa) do not fulfill the basic structural and dynamic criteria to be so considered. Clades are not localized, their members do not share an environment, and they cannot be said to respond to local selective regimes.

View Article and Find Full Text PDF