Publications by authors named "John Damrath"

Chronic heavy alcohol consumption is a risk factor for low trauma bone fracture. Using a non-human primate model of voluntary alcohol consumption, we investigated the effects of 6 months of ethanol intake on cortical bone in cynomolgus macaques (Macaca fascicularis). Young adult (6.

View Article and Find Full Text PDF
Article Synopsis
  • Patients with chronic kidney disease (CKD) have a significantly higher risk of fractures due to changes in bone structure, specifically increased cortical porosity and diminished matrix hydration.
  • The study involved inducing CKD in mice and testing the effects of mechanical loading and a drug, raloxifene, on bone properties over ten weeks.
  • Results showed that combining mechanical loading with raloxifene treatment improved bone characteristics in CKD mice, leading to lower porosity and enhanced hydration, which could help reduce fracture risk.
View Article and Find Full Text PDF

Diabetes and chronic kidney disease (CKD) consistently rank among the top ten conditions in prevalence and mortality in the United States. Insulin-dependent diabetes (IDD) and CKD each increase the risk of skeletal fractures and fracture-related mortality. However, it remains unknown whether these conditions have interactive end-organ effects on the skeleton.

View Article and Find Full Text PDF

Ferric citrate (FC) is an approved therapy for chronic kidney disease (CKD) patients as a phosphate (Pi) binder for dialysis-dependent CKD, and for iron deficiency anemia (IDA) in non-dialysis CKD. Elevated Pi and IDA both lead to increased FGF23, however, the roles of iron and FGF23 during CKD remain unclear. To this end, iron and Pi metabolism were tested in a mouse model of CKD (0.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) affects 15% of Americans and greatly increases fracture risk due to elevated parathyroid hormone, cortical porosity, and reduced bone material quality. Calcimimetic drugs are used to lower parathyroid hormone (PTH) in CKD patients, but their impact on bone matrix properties remains unknown. We hypothesized that tissue-level bone quality is altered in early CKD and that calcimimetic treatment will prevent these alterations.

View Article and Find Full Text PDF

Previous studies proposed the Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), a receptor expressed in myeloid cells including microglia in brain and osteoclasts in bone, as a link between brain and bone disease. The TREM2 R47H variant is a known risk factor for Alzheimer's disease (AD), the most common form of dementia. To investigate whether altered TREM2 signaling could contribute to bone and skeletal muscle loss, independently of central nervous system defects, we used mice globally hemizygous for the TREM2 R47H variant (TREM2 ), which do not exhibit AD pathology, and wild-type (WT) littermate control mice.

View Article and Find Full Text PDF

Chronic kidney disease-mineral and bone disorder (CKD-MBD) increases cardiovascular calcification and skeletal fragility in part by increasing systemic oxidative stress and disrupting mineral homeostasis through secondary hyperparathyroidism. We hypothesized that treatments to reduce reactive oxygen species formation and reduce parathyroid hormone (PTH) levels would have additive beneficial effects to prevent cardiovascular calcification and deleterious bone architecture and mechanics before end-stage kidney disease. To test this hypothesis, we treated a naturally progressive model of CKD-MBD, the Cy/+ rat, beginning early in CKD with the NADPH oxidase (NOX1/4) inhibitor GKT-137831 (GKT), the preclinical analogue of the calcimimetic etelcalcetide, KP-2326 (KP), and their combination.

View Article and Find Full Text PDF

Purpose Of Review: Chronic kidney disease (CKD) affects over 15% of Americans and results in an increased risk of skeletal fractures and fracture-related mortality. However, there remain great challenges in estimating fracture risk in CKD patients, as conventional metrics such as bone density assess bone quantity without accounting for the material quality of the bone tissue. The purpose of this review is to highlight the detrimental effects of advanced glycation end products (AGEs) on the structural and mechanical properties of bone, and to demonstrate the importance of including bone quality when assessing fracture risk in CKD patients.

View Article and Find Full Text PDF

Osteocytes make up 90-95% of the cellular content of bone and form a rich dendritic network with a vastly greater surface area than either osteoblasts or osteoclasts. Osteocytes are well positioned to play a role in bone homeostasis by interacting directly with the matrix; however, the ability for these cells to modify bone matrix remains incompletely understood. With techniques for examining the nano- and microstructure of bone matrix components including hydroxyapatite and type I collagen becoming more widespread, there is great potential to uncover novel roles for the osteocyte in maintaining bone quality.

View Article and Find Full Text PDF

Raloxifene (RAL) is a selective estrogen receptor modulator (SERM) that has previously been shown to cause acellular benefits to bone tissue. Due to these improvements, RAL was combined with targeted tibial loading to assess if RAL treatment during periods of active bone formation would allow for further mechanical enhancements. Structural, mechanical, and microstructural effects were assessed in bone from C57BL/6 mice that were treated with RAL (0.

View Article and Find Full Text PDF

Hypomineralized matrix is a factor determining bone mineral density. Increased perilacunar hypomineralized bone area is caused by reduced mineralization by osteocytes. The importance of vitamin D in the mineralization by osteocytes was investigated in hemodialysis patients who underwent total parathyroidectomy (PTX) with immediate autotransplantation of diffuse hyperplastic parathyroid tissue.

View Article and Find Full Text PDF

Cancer stem cells likely survive chemotherapy or radiotherapy by acquiring mutations that inactivate the endogenous apoptotic machinery or by cycling slowly. Thus, knowledge about the mechanisms linking the activation of an alternative cell death modality and the cell cycle machinery could have a transformative impact on the development of new cancer therapies, but the mechanisms remain completely unknown. We investigated the regulation of alternative cell death in Drosophila larval brain neural stem cells (neuroblasts) in which apoptosis is normally repressed.

View Article and Find Full Text PDF