Soil salinity poses a severe threat to rice production, resulting in stunted growth, leaf damage, and substantial yield losses. This study focuses on developing an early maturing seedling stage salinity tolerant rice variety by integrating conventional breeding methods with marker assisted breeding (MAB) approaches. Seedling-stage salinity tolerance Quantitative Trait Locus (QTL) "Saltol" from the salt-tolerant parent FL478 was introduced into the high-yielding but salt-sensitive rice variety ADT 45.
View Article and Find Full Text PDFLong-term breeding schemes using genomic selection (GS) can boost the response to selection per year. Although several studies have shown that GS delivers a higher response to selection, only a few analyze which stage GS produces better results and how to update the training population to maintain prediction accuracy. We used stochastic simulation to compare five GS breeding schemes in a self-pollinated long-term breeding program.
View Article and Find Full Text PDFEstimating genetic trends using historical data is an important parameter to check the success of the breeding programs. The estimated genetic trends can act as a guideline to target the appropriate breeding strategies and optimize the breeding program for improved genetic gains. In this study, 17 years of historical data from IRRI's rice drought breeding program was used to estimate the genetic trends and assess the breeding program's success.
View Article and Find Full Text PDFBackground And Aims: The ability for salt removal at the leaf sheath level is considered to be one of the major mechanisms associated with salt tolerance in rice. Thus, understanding the genetic control of the salt removal capacity in leaf sheaths will help improve the molecular breeding of salt-tolerant rice varieties and speed up future varietal development to increase productivity in salt-affected areas. We report a genome-wide association study (GWAS) conducted to find single nucleotide polymorphisms (SNPs) associated with salt removal in leaf sheaths of rice.
View Article and Find Full Text PDFBackground: While a multitude of genotyping platforms have been developed for rice, the majority of them have not been optimized for breeding where cost, turnaround time, throughput and ease of use, relative to density and informativeness are critical parameters of their utility. With that in mind we report the development of the 1K-Rice Custom Amplicon, or 1k-RiCA, a robust custom sequencing-based amplicon panel of ~ 1000-SNPs that are uniformly distributed across the rice genome, designed to be highly informative within indica rice breeding pools, and tailored for genomic prediction in elite indica rice breeding programs.
Results: Empirical validation tests performed on the 1k-RiCA showed average marker call rates of 95% with marker repeatability and concordance rates of 99%.
Despite strong interest over many years, the usage of quantitative trait loci in plant breeding has often failed to live up to expectations. A key weak point in the utilisation of QTLs is the "quality" of markers used during marker-assisted selection (MAS): unreliable markers result in variable outcomes, leading to a perception that MAS products fail to achieve reliable improvement. Most reports of markers used for MAS focus on markers derived from the mapping population.
View Article and Find Full Text PDFBackground: Cultivated rice species (Oryza sativa L. and O. glaberrima Steud.
View Article and Find Full Text PDF