Publications by authors named "John D Watts"

Metal oxide nanomaterials have exhibited excellent performance as nanomedicines in photodynamic therapy (PDT) for cancer and infection treatment. Their unique and tunable physicochemical properties advance them as promising alternatives in drug delivery, early diagnosis, imaging, and treatment against various tumors and infectious diseases. Moreover, the implementation of nanophototherapy in deep tissue sites is enhanced by advancements in photosensitization technology.

View Article and Find Full Text PDF

A quantitative structure-activity relationship (QSAR) study of seventeen metal oxide nanoparticles (MNPs), in regard to their photo-induced toxicity to bacteria Escherichia coli, was developed by using quantum chemical methods. A simple and statistically significant QSAR model (F=33.83, R(2)=0.

View Article and Find Full Text PDF

The binding of O2 and NO to heme in heme-nitric oxide/oxygen-binding (H-NOX) proteins has been investigated with DFT as well as dispersion-corrected DFT methods. The local protein environment was accounted for by including the six nearest surrounding residues in the studied systems. Attention was also paid to the effects of the protein environment, particularly the distal Tyr140, on the proximal iron-histidine (Fe-His) binding.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the binding energies of CO and O2 to wild-type myoglobin and two mutant forms (H64L, V68N) using DFT methods.
  • It emphasizes the role of histidine-64 in oxygen and carbon monoxide discrimination and reveals how the protein environment influences ligand binding.
  • The research highlights the importance of applying dispersion corrections in computational models to enhance accuracy in predicting binding energies.
View Article and Find Full Text PDF

DFT and dispersion-corrected DFT calculations were carried out to probe the factors that distort the heme structure in Heme-Nitric oxide/OXygen-binding (H-NOX) protein domains. Various model systems that include heme, heme+surrounding residues, and heme+surrounding residues+additional protein environment were examined; the latter system was calculated with a quantum mechanics/molecular mechanics (QM/MM) method. The computations were extended to a myoglobin (Mb) protein, in which the heme structure is quite planar, in contrast to that in H-NOX.

View Article and Find Full Text PDF

Coupled-cluster calculations including non-iterative effects of triple excitations (CCSD(T)) have been made with correlation-consistent basis sets to study a range of properties of Ag3, Ag3(-), and Ag3(+). The methodology was tested on atomic and diatomic silver systems. The accuracy achieved for these systems suggests that predictive-quality results can be expected for the triatomic systems.

View Article and Find Full Text PDF

Sixty-four (64) density functionals, ranging from GGA, meta-GGA, hybrid GGA to hybrid meta-GGA, were tested to evaluate the FeP(Im)-AB bonding energies (E(bond)) in the heme model complexes FeP(Im)(AB) (P = porphine, Im = imidazole, AB = CO, NO, and O(2)). The results indicate that an accurate prediction of E(bond) for the various ligands to heme is difficult with the DFT methods; usually a functional successful for one system does not perform equally well for the other system(s). Relatively satisfactory results for the various FeP(Im)-AB bonding energies are obtained with the meta-GGA funtionals BLAP3 and Bmτ1; they yield E(bond) values of ca.

View Article and Find Full Text PDF

For the first time, a theoretical study has been performed on the prototypical decathio[10]circulene (C(20)S(10)) species, which is an analogue of the novel octathio[8]circulene "Sulflower" molecule (C(16)S(8)). Examinations of the singlet and triplet states of C(20)S(10) were made at the B3LYP/6-311G(d) level. Local minima of C(2) and C(s) symmetry were found for the lowest singlet and triplet states, respectively.

View Article and Find Full Text PDF

We examine five forested landscapes in Africa (Cameroon, Madagascar, and Tanzania) and Asia (Indonesia and Laos) at different stages of landscape change. In all five areas, forest cover (outside of protected areas) continues to decrease despite local people's recognition of the importance of forest products and services. After forest conversion, agroforestry systems and fallows provide multiple functions and valued products, and retain significant biodiversity.

View Article and Find Full Text PDF

DFT/TDDFT calculations have been carried out for a series of silver and gold nanorod clusters (Ag(n), Au(n), n = 12-120) whose structures are of cigar-type. Pentagonal Ag(n) clusters with n = 49-121 and hexagonal Au(n) clusters with n = 14-74 were also calculated for comparison. Metal-metal distances, binding energies per atom, ionization potentials, and electron affinities were determined, and their trends with cluster size were examined.

View Article and Find Full Text PDF

Coupled-cluster calculations with extended basis sets that include noniterative connected triple excitations (CCSD(T)) have been used to study the FOOOF isomer of F(2)O(3). Second-order Moller-Plessett perturbation theory (MP2) and density-functional theory (B3LYP functional) calculations have also been performed for comparison. Two local minima of similar energy, namely, conformers of C(2) and C(s) symmetry have been located.

View Article and Find Full Text PDF

A theoretical comparative study of a series of five- and six-coordinate iron porphyrins, FeP(L) and FeP(L)(O(2)), has been carried out using DFT methods, where P = porphine and L = imidazole (Im), 1-methylimidazole (1-MeIm), 2-methylimidazole (2-MeIm), 1,2-dimethylimidazole (1,2-Me(2)Im), 4-ethylimidazole (4-EtIm), or histidine (His). Two ligated "picket-fence" iron porphyrins, FeTpivPP(2-MeIm) and FeTpivPP(2-MeIm)(O(2)), were also included in the study for comparison. A number of density functionals were employed in the computations to obtain reliable results.

View Article and Find Full Text PDF
Article Synopsis
  • The study uses DFT methods to analyze the electronic structure and bonding in noncovalent, supramolecular complexes of fullerenes (C(60), C(70)) with iron and manganese porphyrins, focusing on their binding energies.
  • The findings indicate that the ground state for (Cl)FeP*C(60) and MnP*C(70) is high spin (S = 5/2), contrary to previous papers which suggested a low-spin state for MnP*C(70).
  • The large dispersion energies (0.6 to 1.0 eV) calculated significantly enhance the binding energy of these fullerene-porphyrin complexes, suggesting further experiments are needed to clarify the electronic structure of MnP
View Article and Find Full Text PDF

The quality of the newly added, empirical dispersion correction in density functional theory (DFT) calculations is examined for several supramolecular complexes of fullerene (C(60)) with free-base and metal porphyrins (Por). The benzene dimer (C(6)H(6))(2), naphthalene dimer (C(10)H(8))(2), and anthracene dimer (C(14)H(10))(2) were also included in the study for comparison. Three density functionals, two damping functions, and two types of basis sets were employed in the computations.

View Article and Find Full Text PDF

Ab initio theoretical calculations have been used to study the influence of phosphorus substituents, Y, on the tautomerism between the vinylphosphine XP(H)C(CH(3))=CH(2) and the phosphaalkene XP=C(CH(3))(2) (X = H, F, Cl, Br, OH, and Ar(F); Ar(F) = 2,6-(CF(3))(2)C(6)H(3)) and on the acidity of the aforementioned vinylphosphine. The stabilization of the phosphaalkene and the increased acidity of the vinylphosphine by Ar(F) are possible factors in the successful synthesis of certain isolable phosphaalkenes. In this work, the properties of Ar(F) are assessed theoretically.

View Article and Find Full Text PDF

A theoretical study has been made on six isomers of H2SO2 using coupled-cluster singles and doubles with noniterative triple excitations (CCSD(T)). The isomers studied are sulfoxylic acid (S(OH)2; C2 and Cs conformers), sulfinic acid (HS(=O)OH; 2 C1 conformers), dihydrogen sulfone (H2SO2; C2v), sulfhydryl hydroperoxide (HSOOH; C1), thiadioxirane (Cs), and dihydrogen persulfoxide (H2SOO; Cs). Molecular geometries, harmonic vibrational frequencies, and infrared intensities of all species were obtained using the CCSD(T) method and the 6-311++G(2d,2p) basis set.

View Article and Find Full Text PDF

The electronic structure of some substituted, four-coordinate iron(II) porphyrins has been investigated with DFT methods. These systems include iron tetraphenylporphine (FeTPP), iron octamethyltetrabenzporphine (FeOTBP), iron tetra(alpha,alpha,alpha,alpha-orthopivalamide)phenylporphine (FeTpivPP, also called "picket fence" porphyrin), halogenated iron porphyrins (FeTPPXn, X=F, Cl; n=20, 28), and iron octaethylporphine (FeOEP). A number of density functionals were used in the calculations.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the electronic structure and bonding of C60 fullerene with various transition metal porphyrins using density functional theory (DFT) methods, with specific emphasis on dispersion corrections for binding energy.
  • Results indicate that the ground state of the C60.FeP complex exhibits a high-spin configuration, while the binding energies vary considerably among different metals, being stronger for Fe and Co compared to Ni, Cu, and Zn.
  • The research also explores how the presence of C60 influences the redox properties of the transition metal porphyrins.
View Article and Find Full Text PDF

The electronic structure, molecular structure, and electronic spectra of lanthanide(III) mono- and bisporphyrin complexes are investigated using a DFT/TDDFT method. These complexes include YbP(acac), YbP(2), [YbP(2)](+), YbHP(2), and [YbP(2)](-) (where P = porphine and acac = acetylacetonate). To shed some light on the origin of the out-of-plane displacement of Yb in YbP(acac), unligated model systems, namely, planar D(4h) and distorted C(4nu) YbP, were calculated.

View Article and Find Full Text PDF

Equilibrium geometries of the ground states of hydrogen peroxide (H(2)O(2)) and methyl hydroperoxide (CH(3)OOH) have been obtained using quadratic configuration interaction methods with correlation-consistent basis sets. These results are compared with experiments and prior calculations. The dipole moments of the ground states of these two molecules have been calculated.

View Article and Find Full Text PDF

The behaviors of a large number of GGA, meta-GGA, and hybrid-GGA density functionals in describing the spin-state energetics of iron porphyrins and related compounds have been investigated. There is a large variation in performance between the various functionals for the calculations of the high-spin state relative energies. Most GGA and meta-GGA functionals are biased toward lower-spin states and so fail to give the correct ground state for the high-spin systems, for which the meta-GGA functionals show more or less improvement over the GGA ones.

View Article and Find Full Text PDF

A theoretical comparative study of complexes of porphyrin (P), porphyrazine (Pz), phthalocyanine (Pc), porphycene (Pn), dibenzoporphycene (DBPn), and hemiporphyrazine (HPz) with iron (Fe) has been carried out using a density functional theory (DFT) method. The difference in the core size and shape of the macrocycle has a substantial effect on the electronic structure and properties of the overall system. The ground states of FeP and FePc were identified to be the 3A2g [(d(xy))2(d(z)2)2(d(pi))2] state, followed by 3E(g) [(d(xy))2(d(z)2)1(d(pi))3].

View Article and Find Full Text PDF

The effects of peripheral substituents and axial ligands (L) on the electronic structure and properties of cobalt tetraphenylporphyrin (CoTPP) have been studied using DFT methods. Various density functionals were tested, and the ground state of each system was determined by considering several possible low-lying states. The ground states of the fully fluorinated CoTPPF28(L)2 complexes with L = THF, Py, and Im were identified to be high-spin (4E(g)) by the meta-GGA functional tau-HCTH, which contains the kinetic energy density tau, in agreement with experimental measurements.

View Article and Find Full Text PDF

The effects of peripheral, multiple -F as well as -C2F5 substituents, on the electronic structure and properties of unligated and ligated metal phthalocyanines, PcM, PcM(acetone)2 (M = Fe, Co, Zn), PcZn(Cl), and PcZn(Cl(-)), have been investigated using a DFT method. The calculations provide a clear explanation for the changes in the ground state, molecular orbital (MO) energy levels, ionization potentials (IP), electron affinities (EA), charge distribution on the metal (QM), axial binding energies, and in electronic spectra. While the strongly electron-withdrawing -C2F5 groups on the Pc ring change the ground state of PcFe, they do not influence the ground state of PcCo.

View Article and Find Full Text PDF

A theoretical study of the electronic structure, bonding, and properties of unligated and ligated manganese(II) porphyrins and phthalocyanines has been carried out "in detail" using a density functional theory (DFT) method. While manganese tetraphenylporphine (MnTPP) in the crystal is high spin (S = 5/2) with the Mn(II) atom out of the porphyrin plane, the present calculations find that the free manganese porphine (MnP) molecule has no obvious tendency to distort from planarity even in the high-spin state. The ground state of the planar structure is found to be intermediate spin (S = 3/2).

View Article and Find Full Text PDF