Subcutaneous injection, which is a preferred delivery method for many drugs, causes deformation, damage, and fracture of the subcutaneous tissue. Yet, experimental data and constitutive modeling of these dissipation mechanisms in subcutaneous tissue remain limited. Here we show that subcutaneous tissue from the belly and breast anatomical regions in the swine show nonlinear stress-strain response with the characteristic J-shaped behavior of collagenous tissue.
View Article and Find Full Text PDFThe analysis of tissue mechanics in biomedical applications demands nonlinear constitutive models able to capture the energy dissipation mechanisms, such as damage, that occur during tissue deformation. Furthermore, implementation of sophisticated material models in finite element models is essential to improve medical devices and diagnostic tools. Building on previous work toward microstructure-driven models of collagenous tissue, here we show a constitutive model based on fiber orientation and waviness distributions for skin that captures not only the anisotropic strain-stiffening response of this and other collagen-based tissues, but, additionally, accounts for tissue damage directly as a function of changes in the microstructure, in particular changes in the fiber waviness distribution.
View Article and Find Full Text PDF