Publications by authors named "John D Swenson"

Invasive species with native ranges spanning strong environmental gradients are well suited for examining the roles of selection and population history in rapid adaptation to new habitats, providing insight into potential evolutionary responses to climate change. The Atlantic oyster drill (Urosalpinx cinerea) is a marine snail whose native range spans the strongest coastal latitudinal temperature gradient in the world, with invasive populations established on the US Pacific coast. Here, we leverage this system using genome-wide SNPs and environmental data to examine invasion history and identify genotype-environment associations indicative of local adaptation across the native range, and then assess evidence for allelic frequency shifts that would signal rapid adaptation within invasive populations.

View Article and Find Full Text PDF

Declining body size in fishes and other aquatic ectotherms associated with anthropogenic climate warming has significant implications for future fisheries yields, stock assessments and aquatic ecosystem stability. One proposed mechanism seeking to explain such body-size reductions, known as the gill oxygen limitation (GOL) hypothesis, has recently been used to model future impacts of climate warming on fisheries but has not been robustly empirically tested. We used brook trout (Salvelinus fontinalis), a fast-growing, cold-water salmonid species of broad economic, conservation and ecological value, to examine the GOL hypothesis in a long-term experiment quantifying effects of temperature on growth, resting metabolic rate (RMR), maximum metabolic rate (MMR) and gill surface area (GSA).

View Article and Find Full Text PDF

Obtaining robust estimates of population abundance is a central challenge hindering the conservation and management of many threatened and exploited species. Close-kin mark-recapture (CKMR) is a genetics-based approach that has strong potential to improve the monitoring of data-limited species by enabling estimates of abundance, survival, and other parameters for populations that are challenging to assess. However, CKMR models have received limited sensitivity testing under realistic population dynamics and sampling scenarios, impeding the application of the method in population monitoring programs and stock assessments.

View Article and Find Full Text PDF

Close-kin mark-recapture (CKMR) is a method analogous to traditional mark-recapture but without requiring recapture of individuals. Instead, multilocus genotypes (genetic marks) are used to identify related individuals in one or more sampling occasions, which enables the opportunistic use of samples from harvested wildlife. To apply the method accurately, it is important to build appropriate CKMR models that do not violate assumptions linked to the species' and population's biology and sampling methods.

View Article and Find Full Text PDF

We report 24 new records of the Brazilian cownose ray Rhinoptera brasiliensis outside its accepted geographic range. Sequencing of a 442-base pair portion of the mitochondrial NADH dehydrogenase subunit 2 gene for 282 Rhinoptera samples revealed eight records off the east coast of the USA and 16 from the eastern Gulf of Mexico. Both sexes of all life stages were documented in all seasons over multiple years in the Indian River and Lake Worth lagoons, Florida, indicating that their range extends further in the western North Atlantic than previously described.

View Article and Find Full Text PDF

Batoids are a diverse clade of flat cartilaginous fishes that occur primarily in benthic marine habitats. The skates and rays typically use their flexible pectoral fins for feeding and propulsion via undulatory swimming. However, two groups of rays have adopted a pelagic or bentho-pelagic lifestyle and utilize oscillatory swimming-the Myliobatidae and Gymnuridae.

View Article and Find Full Text PDF