Publications by authors named "John D M Nguyen"

Identifying optimal reaction coordinates for complex conformational changes and protein folding remains an outstanding challenge. This study combines collective variable (CV) discovery based on chemical intuition and machine learning with enhanced sampling to converge the folding free energy landscape of lasso peptides, a unique class of natural products with knot-like tertiary structures. This knotted scaffold imparts remarkable stability, making lasso peptides resistant to proteolytic degradation, thermal denaturation, and extreme pH conditions.

View Article and Find Full Text PDF

Mycolactone is an exotoxin produced by that causes the neglected tropical skin disease Buruli ulcer. This toxin inhibits the Sec61 translocon in the endoplasmic reticulum (ER), preventing the host cell from producing several secretory and transmembrane proteins, resulting in cytotoxic and immunomodulatory effects. Interestingly, only one of the two dominant isoforms of mycolactone is cytotoxic.

View Article and Find Full Text PDF

Mycolactone is an exotoxin produced by that causes the neglected tropical skin disease Buruli ulcer. This toxin inhibits the Sec61 translocon in the endoplasmic reticulum (ER), preventing the host cell from producing many secretory and transmembrane proteins, resulting in cytotoxic and immunomodulatory effects. Interestingly, only one of the two dominant isoforms of mycolactone is cytotoxic.

View Article and Find Full Text PDF

Mycolactone is a cytotoxic and immunosuppressive macrolide produced by Mycobacterium ulcerans and the sole causative agent of the neglected tropical skin disease Buruli ulcer. The toxin acts by invading host cells and interacting with intracellular targets to disrupt multiple fundamental cellular processes. Mycolactone's amphiphilic nature enables strong interactions with lipophilic environments, including cellular membranes; however, the specificity of these interactions and the role of membranes in the toxin's pathogenicity remain unknown.

View Article and Find Full Text PDF

Understanding the permeation of biomolecules through cellular membranes is critical for many biotechnological applications, including targeted drug delivery, pathogen detection, and the development of new antibiotics. To this end, computer simulations are routinely used to probe the underlying mechanisms of membrane permeation. Despite great progress and continued development, permeation simulations of realistic systems (e.

View Article and Find Full Text PDF