Fragile X syndrome (FXS) is the most common genetic form of intellectual disability caused by a CGG repeat expansion in the 5'-UTR of the Fragile X mental retardation gene FMR1, triggering epigenetic silencing and the subsequent absence of the protein, FMRP. Reactivation of FMR1 represents an attractive therapeutic strategy targeting the genetic root cause of FXS. However, largely missing in the FXS field is an understanding of how much FMR1 reactivation is required to rescue FMRP-dependent mutant phenotypes.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
December 2017
()-3-((3S,4S)-3-fluoro-4-(4-hydroxyphenyl)piperidin-1-yl)-1-(4-methylbenzyl)pyrrolidin-2-one (BMS-986169) and the phosphate prodrug 4-((3,4)-3-fluoro-1-((R)-1-(4-methylbenzyl)-2-oxopyrrolidin-3-yl)piperidin-4-yl)phenyl dihydrogen phosphate (BMS-986163) were identified from a drug discovery effort focused on the development of novel, intravenous glutamate -methyl-d-aspartate 2B receptor (GluN2B) negative allosteric modulators (NAMs) for treatment-resistant depression (TRD). BMS-986169 showed high binding affinity for the GluN2B subunit allosteric modulatory site (K = 4.03-6.
View Article and Find Full Text PDFThe alpha7 (α7) nicotinic acetylcholine receptor is a therapeutic target for cognitive disorders. Here we describe 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide (B-973), a novel piperazine-containing molecule that acts as a positive allosteric modulator of the α7 receptor. We characterize the action of B-973 on the α7 receptor using electrophysiology and radioligand binding.
View Article and Find Full Text PDFIn vitro phenotypic assays of sensory neuron activity are important tools for identifying potential analgesic compounds. These assays are typically characterized by hyperexcitable and/or abnormally, spontaneously active cells. Whereas manual electrophysiology experiments provide high-resolution biophysical data to characterize both in vitro models and potential therapeutic modalities (e.
View Article and Find Full Text PDFThe long lasting antidepressant response seen following acute, i.v. ketamine administration in patients with treatment-resistant depression (TRD) is thought to result from enhanced synaptic plasticity in cortical and hippocampal circuits.
View Article and Find Full Text PDFLong-term L-DOPA treatment for Parkinson's disease (PD) is limited by motor complications, particularly L-DOPA-induced dyskinesia (LID). A therapy with the ability to ameliorate LID without reducing anti-parkinsonian benefit would be of great value. We assessed the ability of TC-8831, an agonist at nicotinic acetylcholine receptors (nAChR) containing α6β2/α4β2 subunit combinations, to provide such benefits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP) lesioned macaques with established LID.
View Article and Find Full Text PDFHere we validate the design and use of a novel, customized electrophysiology system (Slice XVIvo™) that is capable of recording from 16 independent brain slices. The system consists of 16 independent recording chambers in which individual electrodes can be manually manipulated and fixed in order to stimulate and record extracellular responses from 16 brain slices simultaneously. Responses from each brain slice are elicited with individual stimulus isolator units and recorded through separate channels, thus allowing for independent control and analysis of the evoked extracellular activity from each slice.
View Article and Find Full Text PDFBackground: Chronic ethanol (EtOH) leads to disruptions in resting electroencephalogram (EEG) activity and in sleep patterns that can persist into the withdrawal period. These disruptions have been suggested to be predictors of relapse. The thalamus is a key structure involved in both normal brain oscillations, such as sleep-related oscillations, and abnormal rhythms found in disorders such as epilepsy and Parkinson's disease.
View Article and Find Full Text PDFHigh-throughput compound screening using electrophysiology-based assays represents an important tool for biomedical research and drug discovery programs. The recent development and availability of devices capable of performing high-throughput electrophysiology-based screening have brought the need to validate these tools by producing data that are consistent with results obtained with conventional electrophysiological methods. In this study, we compared the response properties of hα3β4 and hα4β2 nicotinic receptors to their endogenous ligand acetylcholine (ACh) using three separate electrophysiology platforms: Dynaflow (low-throughput, manual system), PatchXpress 7000A (medium-throughput automated platform), and IonWorks Barracuda (high-throughput automated platform).
View Article and Find Full Text PDFFast solution exchange techniques have revolutionized the study of synaptic transmission and promise to remain an important neuroscience research tool. Here we provide evidence for the hypothesis that using continuous, rapid transitions through an agonist solution can significantly increase the exchange rate around a cell by reducing the diffusion boundary at the membrane. This novel approach of rapid solution exchange during whole-cell recordings--described as a "liquid bullet" (LB) application--takes advantage of a bidirectional solution flow around the cell, allowing for a full solution exchange within a range of several milliseconds.
View Article and Find Full Text PDFMechanisms of plasticity are important to the astounding capacity of the brain to adapt and learn. Ion channels are significant contributors to neuronal plasticity, but their dysfunction has been implicated in several nervous system diseases from movement disorders to epilepsy. Although many inherited ion channel mutations have been associated with these disorders, it has been recently recognized that channelopathies can also include aberrant ion channel function that is acquired after an insult or injury to the brain.
View Article and Find Full Text PDFSome epilepsies are linked to inherited traits, but many appear to arise through acquired alterations in neuronal excitability. Status epilepticus (SE) is associated with numerous changes that promote spontaneous recurrent seizures (SRS), and studies have suggested that hippocampal T-type Ca(2+) channels underlie increased bursts of activity integral to the generation of these seizures. The thalamus also contributes to epileptogenesis, but no studies have directly assessed channel alterations in the thalamus during SE or subsequent periods of SRS.
View Article and Find Full Text PDF