Publications by authors named "John D Cupp"

Higher plant mitochondrial genomes exhibit much greater structural complexity compared to most other organisms. Unlike well-characterized metazoan mitochondrial DNA (mtDNA) replication, an understanding of the mechanism(s) and proteins involved in plant mtDNA replication remains unclear. Several plant mtDNA replication proteins, including DNA polymerases, DNA primase/helicase, and accessory proteins have been identified.

View Article and Find Full Text PDF

Background: The Arabidopsis thaliana genome encodes a homologue of the full-length bacteriophage T7 gp4 protein, which is also homologous to the eukaryotic Twinkle protein. While the phage protein has both DNA primase and DNA helicase activities, in animal cells Twinkle is localized to mitochondria and has only DNA helicase activity due to sequence changes in the DNA primase domain. However, Arabidopsis and other plant Twinkle homologues retain sequence homology for both functional domains of the phage protein.

View Article and Find Full Text PDF

Plant organelle genomes are complex and the mechanisms for their replication and maintenance remain unclear. Arabidopsis thaliana has two DNA polymerase genes, DNA polymerase IA (polIA) and polIB, that are dual targeted to mitochondria and chloroplasts and are differentially expressed in primary plant tissues. PolIB gene expression occurs at higher levels in tissues not primary for photosynthesis.

View Article and Find Full Text PDF