In the last 10 years, there has been a relative explosion of new rodent systems that recapitulate both genetic and cellular lesions that lead to the development of pancreatic cancer. These models now need to be considered when selecting an appropriate in vivo system to study disease etiology, cell signaling, and drug development. The majority of these evaluations have used transplantation of cancer cells and the use of carcinogens, which still maintain their value when investigating human cancer and epigenetic contributors.
View Article and Find Full Text PDFObjective: The chondrocyte response to insulin-like growth factor 1 (IGF-1) is reduced with aging and in osteoarthritis (OA). IGF-1 signals through the phosphatidylinositol 3-kinase/Akt pathway. TRB3, a tribbles homolog, has been shown to inhibit IGF-1-mediated activation of Akt in HEK 293 cells.
View Article and Find Full Text PDFThe IGF-I (insulin-like growth factor-I) signalling pathway responsible for regulation of proteoglycan synthesis in chondrocytes has not been defined and is the focus of the present study. Chondrocytes isolated from normal human articular cartilage were stimulated with IGF-I in monolayer culture or in suspension in alginate. IGF-I activated members of both the PI3K (phosphoinositide 3-kinase) pathway and the ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) pathway.
View Article and Find Full Text PDF