Unlabelled: In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors.
View Article and Find Full Text PDFIn our previous publication, we reported a framework to develop an undergraduate cancer research training program at Florida A&M University (FAMU) under the umbrella of the Florida-California Cancer Research, Education, and Engagement (CaRE) Health Equity Center activity by harnessing the resources available at FAMU, the University of Florida (UF), and the University of Southern California (USC) Cancer Centers. The implementation of the CaRE face-to-face training platform was dramatically affected by the COVID-19 pandemic during the summer of 2020 and 2021 training periods. However, a concerted effort was made to restructure the face-to-face training model into virtual and hybrid training methods to maintain the continuity of the program during the pandemic.
View Article and Find Full Text PDFBackground: In breast tumors, somatic mutation frequencies in and vary by tumor subtype and ancestry. HER2 positive and triple negative breast cancers (TNBC) have a higher frequency of somatic mutations than other subtypes. mutations are more frequently observed in hormone receptor positive tumors.
View Article and Find Full Text PDFMultiple Myeloma is a typical example of a neoplasm that shows significant differences in incidence, age of onset, type, and frequency of genetic alterations between patients of African and European ancestry. This perspective explores the hypothesis that both genetic polymorphisms and spontaneous somatic mutations in the TP53 tumor suppressor gene are determinants of these differences. In the US, the rates of occurrence of MM are at least twice as high in African Americans (AA) as in Caucasian Americans (CA).
View Article and Find Full Text PDFIntroduction: The Florida-California Cancer Research, Education, and Engagement (CaRE) Health Equity Center is a triad partnership committed to increasing institutional capacity for cancer disparity research, the diversity of the cancer workforce, and community empowerment. This article provides an overview of the structure, process innovations, and initial outcomes from the first 4 years of the CaRE triad partnership.
Methods: CaRE serves diverse populations in Florida and California using a "molecule to the community and back" model.
Introduction: Many patients with growth hormone-secreting pituitary adenoma (GHPA) fail to achieve biochemical remission, warranting investigation into epigenetic and molecular signatures associated with tumorigenesis and hormonal secretion. Prior work exploring the DNA methylome showed Myc-Associated Protein X (MAX), a transcription factor involved in cell cycle regulation, was differentially methylated between GHPA and nonfunctional pituitary adenoma (NFPA). We aimed to validate the differential DNA methylation and related MAX protein expression profiles between NFPA and GHPA.
View Article and Find Full Text PDFBackground: Genetic factors play an important role in prostate cancer (PCa) susceptibility.
Objective: To discover common genetic variants contributing to the risk of PCa in men of African ancestry.
Design, Setting, And Participants: We conducted a meta-analysis of ten genome-wide association studies consisting of 19378 cases and 61620 controls of African ancestry.
Background: Engaging diverse populations in cancer genomics research is of critical importance and is a fundamental goal of the NCI Participant Engagement and Cancer Genome Sequencing (PE-CGS) Network. Established as part of the Cancer Moonshot, PE-CGS is a consortium of stakeholders including clinicians, scientists, genetic counselors, and representatives of potential study participants and their communities. Participant engagement is an ongoing, bidirectional, and mutually beneficial interaction between study participants and researchers.
View Article and Find Full Text PDFUnlabelled: Triple-negative breast cancer (TNBC) is an aggressive disease that disproportionately affects African American (AA) women. Limited targeted therapeutic options exist for patients with TNBC. Here, we employ spatial transcriptomics to interrogate tissue from a racially diverse TNBC cohort to comprehensively annotate the transcriptional states of spatially resolved cellular populations.
View Article and Find Full Text PDFUnlabelled: Women of sub-Saharan African descent have disproportionately higher incidence of triple-negative breast cancer (TNBC) and TNBC-specific mortality across all populations. Population studies show racial differences in TNBC biology, including higher prevalence of basal-like and quadruple-negative subtypes in African Americans (AA). However, previous investigations relied on self-reported race (SRR) of primarily U.
View Article and Find Full Text PDFPurpose: Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype that disproportionately affects women of African ancestry (WAA) and is often associated with poor survival. Although there is a high prevalence of TNBC across West Africa and in women of the African diaspora, there has been no comprehensive genomics study to investigate the mutational profile of ancestrally related women across the Caribbean and West Africa.
Methods: This multisite cross-sectional study used 31 formalin-fixed paraffin-embedded (FFPE) samples from Barbadian and Nigerian TNBC participants.
mutations are one of the most common oncogenic drivers in non-small cell lung cancer (NSCLC) and in lung adenocarcinomas in particular. Development of therapeutics targeting KRAS has been incredibly challenging, prompting indirect inhibition of downstream targets such as MEK and ERK. Such inhibitors, unfortunately, come with limited clinical efficacy, and therefore the demand for developing novel therapeutic strategies remains an urgent need for these patients.
View Article and Find Full Text PDFBackground: Racial and ethnic diversity in clinical trials for cancer treatment is essential for the development of treatments that are effective for all patients and for identifying potential differences in toxicity between different demographics. Mining of social media discussions about clinical trials has been used previously to identify patient barriers to enrollment in clinical trials; however, a comprehensive breakdown of sentiments and barriers by various racial and ethnic groups is lacking.
Objective: The aim of this study is to use an innovative methodology to analyze web-based conversations about cancer clinical trials and to identify and compare conversation topics, barriers, and sentiments between different racial and ethnic populations.
This prospective phase II clinical trial (Side Out 2) explored the clinical benefits of treatment selection informed by multi-omic molecular profiling (MoMP) in refractory metastatic breast cancers (MBCs). Core needle biopsies were collected from 32 patients with MBC at trial enrollment. Patients had received an average of 3.
View Article and Find Full Text PDFHepatocyte growth factor-overexpressing mice that harbor a deletion of the Ink4a/p16 locus (HP mice) form melanomas with low metastatic potential in response to UV irradiation. Here we report that these tumors become highly metastatic following hemizygous deletion of the Nme1 and Nme2 metastasis suppressor genes (HPN mice). Whole-genome sequencing of melanomas from HPN mice revealed a striking increase in lung metastatic activity that is associated with missense mutations in eight signature genes (Arhgap35, Atp8b4, Brca1, Ift172, Kif21b, Nckap5, Pcdha2, and Zfp869).
View Article and Find Full Text PDFSpatial transcriptional profiling provides gene expression information within the important anatomical context of tissue architecture. This approach is well suited to characterizing solid tumors, which develop within a complex landscape of malignant cells, immune cells, and stroma. In a single assay, spatial transcriptional profiling can interrogate the role of spatial relationships among these cell populations as well as reveal spatial patterns of relevant oncogenic genetic events.
View Article and Find Full Text PDFPurpose: Triple-negative breast cancer (TNBC) is an aggressive subtype most prevalent among women of Western Sub-Saharan African ancestry. It accounts for 15-25% of African American (AA) breast cancers (BC) and up to 80% of Ghanaian breast cancers, thus contributing to outcome disparities in BC for black women. The aggressive biology of TNBC has been shown to be regulated partially by breast cancer stem cells (BCSC) which mediate tumor recurrence and metastasis and are more abundant in African breast tumors.
View Article and Find Full Text PDFBackground: Tumor heterogeneity underlies resistance and disease progression in glioblastoma (GBM), and tumors most commonly recur adjacent to the surgical resection margins in contrast non-enhancing (NE) regions. To date, no targeted therapies have meaningfully altered overall patient survival in the up-front setting. The aim of this study was to characterize intratumoral heterogeneity in recurrent GBM using bulk samples from primary resection and recurrent samples taken from contrast-enhancing (EN) and contrast NE regions.
View Article and Find Full Text PDFWe performed shallow single-cell sequencing of genomic DNA across 1475 cells from a cell-line, COLO829, to resolve overall complexity and clonality. This melanoma tumor-line has been previously characterized by multiple technologies and is a benchmark for evaluating somatic alterations. In some of these studies, COLO829 has shown conflicting and/or indeterminate copy number and, thus, single-cell sequencing provides a tool for gaining insight.
View Article and Find Full Text PDFLack of substantive research experiences and technical skills mentoring during undergraduate studies leaves many underrepresented minority (URM) students unprepared to apply to competitive graduate programs. As a part of our ongoing effort to increase the pipeline for the development and training of successful URM scientists in biomedical sciences with focus on reducing cancer health disparities, the Florida-California Cancer Research Education and Engagement (CaRE) Health Equity Center was launched in 2018. Funded through an NIH/NCI U54 grant mechanism, the CaRE Center is a triad partnership among Florida Agricultural and Mechanical University (FAMU), a minority-serving institution, University of Florida (UF), and University of Southern California (USC) Cancer Center.
View Article and Find Full Text PDFPersons of African ancestry (AA) have a twofold higher risk for multiple myeloma (MM) compared with persons of European ancestry (EA). Genome-wide association studies (GWASs) support a genetic contribution to MM etiology in individuals of EA. Little is known about genetic risk factors for MM in individuals of AA.
View Article and Find Full Text PDFPurpose: Cancer incidence is increasing in sub-Saharan Africa, yet there is little information on the capacity of pathology laboratories in this region. We aimed to assess the current state of pathology services in Nigeria to guide strategies to ensure best practices and improve the quality of surgical specimen handling.
Methods: We developed structured pathology survey to assess tissue handling, sample processing, and immunohistochemistry (IHC) capabilities.