Philos Trans R Soc Lond B Biol Sci
November 2024
Plant chemical diversity is largely owing to a number of enzymes which catalyse reactions involved in the assembly, and in the subsequent chemical modifications, of the core structures of major classes of plant specialized metabolites. One such reaction is acylation. With this in mind, to study the deep evolutionary history of BAHD and the serine-carboxypeptidase-like (SCPL) acyltransferase genes, we assembled phylogenomic synteny networks based on a large-scale inference analysis of orthologues across whole-genome sequences of 126 species spanning Stramenopiles and Archaeplastida, including , tomato () and maize ().
View Article and Find Full Text PDFIn a recent study, Zeng et al. uncovered 3β-tigloyloxytropane synthase (TS) in Atropa belladonna, characterizing its mitochondrial localization and substrate specificity. The discovery of this enzyme opens up new bioengineering possibilities for tropane alkaloids (TAs), enhancing the potential for sustainable agriculture and expanding our knowledge of TA biosynthesis.
View Article and Find Full Text PDFIt is undeniable that tropane alkaloids (TAs) have been both beneficial and detrimental to human health in the modern era. Understanding their biosynthesis is vital for using synthetic biology to engineer organisms for pharmaceutical production. The most parsimonious approaches to pathway elucidation are traditionally homology-based methods.
View Article and Find Full Text PDFPlants are unique organisms that have developed ingenious strategies to cope with environmental challenges, such as herbivorous insects. One of these strategies is the synthesis of a vast array of chemical compounds, known as specialized metabolites, that serve many ecological functions. Among the most fascinating and diverse groups of specialized metabolites are the alkaloids, which are characterized by the presence of a nitrogen atom within a heterocyclic ring.
View Article and Find Full Text PDFThe defensive alkaloid gramine not only protects barley and other grasses from insects but also negatively affects their palatability to ruminants. The key gene for gramine formation has remained elusive, hampering breeding initiatives. In this work, we report that a gene encoding cytochrome P450 monooxygenase CYP76M57, which we name AMI synthase (AMIS), enables the production of gramine in , , and .
View Article and Find Full Text PDFBarley () is one of the most widely cultivated crops for feedstock and beer production, whereas lupins ( spp.) are grown as fodder and their seeds are a source of protein. Both species produce the allelopathic alkaloids gramine and hordenine.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2023
The tropane alkaloids (TAs) cocaine and hyoscyamine have been used medicinally for thousands of years. To understand the evolutionary origins and trajectories of serial biosynthetic enzymes of TAs and especially the characteristic tropane skeletons, we generated the chromosome-level genome assemblies of cocaine-producing (Erythroxylaceae, rosids clade) and hyoscyamine-producing (Solanaceae, asterids clade). Comparative genomic and phylogenetic analysis suggested that the lack of spermidine synthase/-methyltransferase (SPMT1) in ancestral asterids species contributed to the divergence of polyamine (spermidine or putrescine) methylation in cocaine and hyoscyamine biosynthesis.
View Article and Find Full Text PDFFusarium head blight (FHB) is one of the most dangerous diseases of winter wheat, resulting in reduced grain yield and quality, and production of mycotoxins by the fungi. In the present study, changes in the grain metabolomics of winter wheat samples infected with spp. and corresponding non-infected samples from two locations in Croatia were investigated by GC-MS.
View Article and Find Full Text PDFAlthough it is still in its infancy, synthetic biology has the capacity to face scientific and societal problems related to modern agriculture. Innovations in cloning toolkits and genetic parts allow increased precision over gene expression in planta. We review the vast spectrum of available technologies providing a practical list of toolkits that take advantage of combinatorial power to introduce/alter metabolic pathways.
View Article and Find Full Text PDFPlants' ability to chemically modify core structures of specialized metabolites is the main reason why the plant kingdom contains such a wide and rich array of diverse compounds. One of the most important types of chemical modifications of small molecules is the addition of an acyl moiety to produce esters and amides. Large-scale phylogenomics analyses have shown that the enzymes that perform acyl transfer reactions on the myriad small molecules synthesized by plants belong to only a few gene families.
View Article and Find Full Text PDFTropane alkaloids (TAs) are heterocyclic nitrogenous metabolites found across seven orders of angiosperms, including Malpighiales (Erythroxylaceae) and Solanales (Solanaceae). Despite the well-established euphorigenic properties of Erythroxylaceae TAs like cocaine, their biosynthetic pathway remains incomplete. Using yeast as a screening platform, we identified and characterized the missing steps of TA biosynthesis in .
View Article and Find Full Text PDFTea is a steeped beverage made from the leaves of . Globally, this healthy, caffeine-containing drink is one of the most widely consumed beverages. At least 50 countries produce tea and most of the production information and tea research is derived from international sources.
View Article and Find Full Text PDFBackground: Sugar beet is an important crop for sugar production. Sugar beet roots are stored up to several weeks post-harvest waiting for processing in the sugar factories. During this time, sucrose loss and invert sugar accumulation decreases the final yield and processing quality.
View Article and Find Full Text PDFAs the gall-inducing smut fungus Ustilago maydis colonizes maize (Zea mays) plants, it secretes a complex effector blend that suppresses host defense responses, including production of reactive oxygen species (ROS) and redirects host metabolism to facilitate colonization. We show that the U. maydis effector ROS burst interfering protein 1 (Rip1), which is involved in pathogen-associated molecular pattern (PAMP)-triggered suppression of host immunity, is functionally conserved in several other monocot-infecting smut fungi.
View Article and Find Full Text PDFHigh-throughput (HTP) plant phenotyping approaches are developing rapidly and are already helping to bridge the genotype-phenotype gap. However, technologies should be developed beyond current physico-spectral evaluations to extend our analytical capacities to the subcellular level. Metabolites define and determine many key physiological and agronomic features in plants and an ability to integrate a metabolomics approach within current HTP phenotyping platforms has huge potential for added value.
View Article and Find Full Text PDFThe evolution of new traits in living organisms occurs via the processes of mutation, recombination, genetic drift, and selection. These processes that have resulted in the immense biological diversity on our planet are also being employed in metabolic engineering to optimize enzymes and pathways, create new-to-nature reactions, and synthesize complex natural products in heterologous systems. In this review, we discuss two evolution-aided strategies for metabolic engineering-directed evolution, which improves upon existing genetic templates using the evolutionary process, and combinatorial pathway reconstruction, which brings together genes evolved in different organisms into a single heterologous host.
View Article and Find Full Text PDFL. commonly known as Saint John's Wort (SJW), is an important medicinal plant that has been used for more than 2000 years. Although produces several bioactive compounds, its importance is mainly linked to two molecules highly relevant for the pharmaceutical industry: the prenylated phloroglucinol hyperforin and the naphtodianthrone hypericin.
View Article and Find Full Text PDFThe genus contains species used by indigenous people of South America long before the domestication of plants. Two species, and have been utilized for thousands of years specifically for their tropane alkaloid content. While abuse of the narcotic cocaine has impacted society on many levels, these species and their wild relatives contain untapped resources for the benefit of mankind in the form of foods, pharmaceuticals, phytotherapeutic products, and other high-value plant-derived metabolites.
View Article and Find Full Text PDFTropinone is the first intermediate in the biosynthesis of the pharmacologically important tropane alkaloids that possesses the 8-azabicyclo[3.2.1]octane core bicyclic structure that defines this alkaloid class.
View Article and Find Full Text PDFAlkaloids compose a large class of natural products, and mono-methylated polyamines are a common intermediate in their biosynthesis. In order to evaluate the role of selectively methylated natural products, synthetic strategies are needed to prepare them. Here, -methylcadaverine is prepared in 37.
View Article and Find Full Text PDFThe tropane and granatane alkaloids belong to the larger pyrroline and piperidine classes of plant alkaloids, respectively. Their core structures share common moieties and their scattered distribution among angiosperms suggest that their biosynthesis may share common ancestry in some orders, while they may be independently derived in others. Tropane and granatane alkaloid diversity arises from the myriad modifications occurring to their core ring structures.
View Article and Find Full Text PDFThe esterification of methylecgonine (2-carbomethoxy-3β-tropine) with benzoic acid is the final step in the biosynthetic pathway leading to the production of cocaine in Erythoxylum coca. Here we report the identification of a member of the BAHD family of plant acyltransferases as cocaine synthase. The enzyme is capable of producing both cocaine and cinnamoylcocaine via the activated benzoyl- or cinnamoyl-Coenzyme A thioesters, respectively.
View Article and Find Full Text PDF