When a viscoelastic fluid, such as an aqueous polymer solution, flows through a porous medium, the fluid undergoes a repetitive expansion and contraction as it passes from one pore to the next. Above a critical flow rate, the interaction between the viscoelastic nature of the polymer and the pore configuration results in spatial and temporal flow instabilities reminiscent of turbulentlike behavior, even though the Reynolds number Re≪1. To investigate whether this is caused by many repeated pore body-pore throat sequences, or simply a consequence of the converging (diverging) nature present in a single pore throat, we performed experiments using anionic hydrolyzed polyacrylamide (HPAM) in a microfluidic flow geometry representing a single pore throat.
View Article and Find Full Text PDFWe present an experimental study of dissolution-driven convection in a three-dimensional porous medium formed from a dense random packing of glass beads. Measurements are conducted using the model fluid system MEG/water in the regime of Rayleigh numbers, . X-ray computed tomography is applied to image the spatial and temporal evolution of the solute plume non-invasively.
View Article and Find Full Text PDFInjection of CO deep underground into porous rocks, such as saline aquifers, appears to be a promising tool for reducing CO emissions and the consequent climate change. During this process CO displaces brine from individual pores and the sequence in which this happens determines the efficiency with which the rock is filled with CO at the large scale. At the pore scale, displacements are controlled by the balance of capillary, viscous and inertial forces.
View Article and Find Full Text PDFThe fouling of ultrafiltration (UF) and nanofiltration (NF) membranes during the treatment of surface waters continues to be of concern and the particular role of natural organic matter (NOM) requires further investigation. In this study the effect of pH and surface charge on membrane fouling during the treatment of samples of a representative surface water (Hyde Park recreational lake) were evaluated, together with the impact of pre-ozonation. While biopolymers in the surface water could be removed by the UF membrane, smaller molecular weight (MW) fractions of NOM were poorly removed, confirming the importance of membrane pore size.
View Article and Find Full Text PDFA rheometer system to measure the rheology of crude oil in equilibrium with carbon dioxide (CO2) at high temperatures and pressures is described. The system comprises a high-pressure rheometer which is connected to a circulation loop. The rheometer has a rotational flow-through measurement cell with two alternative geometries: coaxial cylinder and double gap.
View Article and Find Full Text PDFWe report experimental measurements of the dissolution rate of several carbonate minerals in CO-saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO-saturated NaCl brines with molalities of up to 5 mol kg. The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid.
View Article and Find Full Text PDFThe spontaneous imbibition of liquid in nanopores of different roughness is investigated using coarse grain molecular dynamics (MD) simulation. The numerical model is presented and the simplifying assumptions are discussed in detail. The molecular-kinetic theory introduced by Blake is used to describe the effect of dynamic contact angle on fluid imbibition.
View Article and Find Full Text PDFRecently there has been a great deal of attention, from researchers both in academia and in industry, focused on the rheological properties of solutions of viscoelastic wormlike micelles formed by surfactants. It is particularly vital to understand the properties of these solutions with regard to their flow in porous media, given their application to the recovery of hydrocarbons from subterranean formations. In this study a realistic mesoscopic Brownian dynamics model has been utilized to investigate the flow of viscoelastic surfactant (VES) fluid through individual pores with sizes of around one micron.
View Article and Find Full Text PDFObjective: The aim of this paper is to inform College Fellows, trainees and other stakeholders about the structure, principles and functioning of the new Board of Education.
Conclusion: The educational activities of the College are likely to evolve and to be developed over the next 5 years by a process taking account of the views of key stakeholders. In the short term, there will be no changes to training or examination processes which would disadvantage trainees.
We use displacement encoding pulsed field gradient (PFG) nuclear magnetic resonance to measure Fourier components S(q) of flow displacement distributions P(zeta) with mean displacement (zeta) for Newtonian and non-Newtonian flows through rocks and bead packs. Displacement distributions are non-Gaussian; hence, there are finite terms above second order in the cumulant expansion of ln(S(q)). We describe an algorithm for an optimal self-consistent cumulant analysis of data, which can be used to obtain the first three (central) moments of a non-Gaussian P(zeta), with error bars.
View Article and Find Full Text PDFThe in situ rheology of polymeric solutions has been studied experimentally in etched silicon micromodels which are idealizations of porous media. The rectangular channels in these etched networks have dimensions typical of pore sizes in sandstone rocks. Pressure drop/flow rate relations have been measured for water and non-Newtonian hydrolyzed-polyacrylamide (HPAM) solutions in both individual straight rectangular capillaries and in networks of such capillaries.
View Article and Find Full Text PDFConfocal laser scanning microscopy has been used to obtain 3D optical image stacks of packings of glass ballotini in various fluorescent dye-containing fluids inside a 3D micromodel. The fluids' refractive index was matched to that of the glass ballotini so that clear images at an appreciable depth (approximately 400 microm) inside the packings were obtained. The lattice Boltzmann method was then used to produce 3D velocity fields through the 3D image stacks of the packed ballotini.
View Article and Find Full Text PDFThis paper explores the correlation between different microstructural characteristics of porous sedimentary rocks and the flow properties of a Newtonian infiltrating fluid. Preliminary results of displacement propagator measurements of brine solution flowing through two types of sedimentary rock cores are reported. The two types of rocks, Bentheimer and Portland, are characterized by different porosities, pore-size distributions and permeabilities.
View Article and Find Full Text PDF