The aerosol performance and delivery characteristics of tobramycin for the treatment of respiratory infection were evaluated using the Orbital™, a multi-breath, high dose, dry powder inhaler (DPI). Micronised tobramycin was prepared and tested in the Orbital and in the commercially available TOBI Podhaler (Novartis AG). Furthermore, the TOBI Podhaler formulation containing tobramycin as Pulmospheres was tested in both the commercial Podhaler device (T-326) and Orbital for comparison.
View Article and Find Full Text PDFThe Bipolar Charge Analyzer (BOLAR) was evaluated for measuring bipolar electrostatic charge and mass distributions of powder aerosols generated from a dry powder inhaler. Mannitol powder (5, 10, and 20 mg) was dispersed using an Osmohaler inhaler into the BOLAR at air flow rates of 30 or 60 L/min. As the aerosol sample was drawn through the BOLAR, the air flow was divided into six equal fractions.
View Article and Find Full Text PDFPurpose: An inhalable dry powder formulation of tranexamic acid (TA) was developed and tested in a novel high-dose Orbital® multi-breath inhaler. The formulation was specifically intended for the treatment of pulmonary haemorrhage and wound healing associated with haemoptysis.
Methods: Inhalable TA particles were prepared by spray drying and the powder characterised using laser diffraction, electron microscopy, thermal analysis, moisture sorption and X-ray powder diffraction.
The current study presents a new approach to tackle high-dose lung delivery using a prototype multibreath Orbital® dry powder inhaler (DPI). One of the key device components is the "puck" (aerosol sample chamber) with precision-engineered outlet orifice(s) that control the dosing rate. The influence of puck orifice geometry and number of orifices on the performance of mannitol aerosols were studied.
View Article and Find Full Text PDFA series of co-engineered macrolide-mannitol particles were successfully prepared using azithromycin (AZ) as a model drug. The formulation was designed to target local inflammation and bacterial colonization, via the macrolide component, while the mannitol acted as mucolytic and taste-masking agent. The engineered particles were evaluated in terms of their physico-chemical properties and aerosol performance when delivered via a novel high-payload dry powder Orbital(™) inhaler device that operates via multiple inhalation manoeuvres.
View Article and Find Full Text PDFJ Aerosol Med Pulm Drug Deliv
April 2014
Purpose: A new approach to delivering high doses of dry powder medicaments to the lung is presented. The Orbital(®) dry powder device is designed to deliver high doses of drugs to the respiratory tract in a single dosing unit, via multiple inhalation maneuvers, overcoming the need to prime or insert multiple capsules.
Methods: The Orbital was tested in its prototype configuration and compared with a conventional RS01 capsule device.
This study aimed to investigate the influence of grid structures on the break-up and aerosol performance of a model inhalation formulation through the use of standardised entrainment tubes in combination with computational fluid dynamics (CFD). A series of entrainment tubes with grid structures of different aperture size and wire diameters were designed in silico and constructed using three-dimensional printing. The flow characteristics were simulated using CFD, and the deposition and aerosol performance of a model agglomerate system (496.
View Article and Find Full Text PDFThis study utilised a combination of computational fluid dynamics (CFD) and standardised entrainment tubes to investigate the influence of impaction on the break-up and aerosol performance of a model inhalation formulation. A series of entrainment tubes, with different impaction plate angles were designed in silico and the flow characteristics, and particle tracks, were simulated using CFD. The apparatuses were constructed using three-dimensional printing.
View Article and Find Full Text PDFPurpose: This study utilized a combination of computational fluid dynamics (CFD) and standardized entrainment tubes to investigate the influence of turbulence on the break-up and aerosol performance of a model inhalation formulation.
Methods: Agglomerates (642.8 mum mean diameter) containing 3.
To study if electrostatic charge initially present in mannitol powder plays a role in the generation of aerosols, mannitol was unipolarly charged to varying magnitudes by tumbling the powder inside containers of different materials. The resulting charge in the powder was consistent with predictions from the triboelectric charging theories, based on the work function values from literature and electron transfer tendencies from measurement of contact angle. The latter generated a parameter, gamma(-)/gamma+, which is a measure of the electron-donating capacity relative to the electron-accepting tendency of material.
View Article and Find Full Text PDFThree different impactor methodologies, the Andersen cascade impactor (ACI), next-generation impactor (NGI) and multistage-liquid impinger (MSLI) were studied to determine their performance when testing ultra-high dose dry powder formulations. Cumulative doses of spray-dried mannitol (Aridol) were delivered to each impactor at a flow rate of 60Lmin(-1) (up to a max dose of 800mg delivering 20 sequential 40mg capsules). In general, total drug collected in both the ACI and NGI falls below the range 85-115% of label claim criteria recommended by the United States of America Food and Drug Administration (FDA) at nominal mannitol doses exceeding 20mg and 200mg, respectively.
View Article and Find Full Text PDF