Background: Dupuytren's contracture is caused by nodules and cords which pull the fingers towards the palm of the hand. Treatments include limited fasciectomy surgery, collagenase injection and needle fasciotomy. There is limited evidence comparing limited fasciectomy with collagenase injection.
View Article and Find Full Text PDFThe focus of current research work was to develop and validate size-exclusion chromatography method and develop and evaluate gel formulation of deferoxamine conjugated with PEGylated carbon nanoparticles (DEF-PEG-CNP) for topical delivery. Size-exclusion chromatography-based method was validated as per ICH guidelines. Effect of Carbopol® 974P and Transcutol® on the nanoparticles' permeation was studied by 3-level full factorial design of experiment.
View Article and Find Full Text PDFMethodist Debakey Cardiovasc J
August 2024
Myocardial recovery is characterized by a return toward normal structure and function of the heart after an injury. Mechanisms of myocardial recovery include restoration and/or adaptation of myocyte structure and function, mitochondrial activity and number, metabolic homeostasis, electrophysiological stability, extracellular matrix remodeling, and myocardial perfusion. Myocardial regeneration is an element of myocardial recovery that involves the generation of new myocardial tissue, a process which is limited in adult humans but may be therapeutically augmented.
View Article and Find Full Text PDFPurpose Of Review: Major Depressive Disorder (MDD) is characterized by persistent symptoms such as fatigue, loss of interest in activities, feelings of sadness and worthlessness. MDD often coexist with cardiovascular disease (CVD), yet the precise link between these conditions remains unclear. This review explores factors underlying the development of MDD and CVD, including genetic, epigenetic, platelet activation, inflammation, hypothalamic-pituitary-adrenal (HPA) axis activation, endothelial cell (EC) dysfunction, and blood-brain barrier (BBB) disruption.
View Article and Find Full Text PDFBackground And Aims: In chronic ischaemic heart failure, revascularisation strategies control symptoms but are less effective in improving left ventricular ejection fraction (LVEF). The aim of this trial is to investigate the safety of cardiac shockwave therapy (SWT) as a novel treatment option and its efficacy in increasing cardiac function by inducing angiogenesis and regeneration in hibernating myocardium.
Methods: In this single-blind, parallel-group, sham-controlled trial (cardiac shockwave therapy for ischemic heart failure, CAST-HF; NCT03859466) patients with LVEF ≤40% requiring surgical revascularisation were enrolled.
Fractures continue to be a global economic burden as there are currently no osteoanabolic drugs approved to accelerate fracture healing. In this study, we aimed to develop an osteoanabolic therapy which activates the Wnt/β-catenin pathway, a molecular driver of endochondral ossification. We hypothesize that using an mRNA-based therapeutic encoding β-catenin could promote cartilage to bone transformation formation by activating the canonical Wnt signaling pathway in chondrocytes.
View Article and Find Full Text PDFVasculopathies occur 15 years earlier in individuals with diabetes mellitus (DM) as compared to those without, but the underlying mechanisms driving diabetic vasculopathy remain incompletely understood. Endothelial cells (ECs) and macrophages (MΦ) are critical players in vascular wall and their crosstalk is crucial in diabetic vasculopathy. In diabetes, EC activation enables monocyte recruitment, which transmigrate into the intima and differentiate into macrophages (MΦ).
View Article and Find Full Text PDFIntroduction: Faculty development (FD) is integral to the implementation of educational programmes. However, attracting new faculty is challenging. Competition is a motivator for learning at an undergraduate level; however, incorporating competition to engage faculty in continued FD has not been explored.
View Article and Find Full Text PDFBackground: Traf2 and Nck-interacting kinase (TNIK) is known for its regulatory role in various processes within cancer cells. However, its role within endothelial cells (ECs) has remained relatively unexplored.
Methods: Leveraging RNA-seq data and Ingenuity Pathway Analysis (IPA), we probed the potential impact of TNIK depletion on ECs.
The ability of endothelial cells to sense and respond to dynamic changes in blood flow is critical for vascular homeostasis and cardiovascular health. The mechanical and geometric properties of the nuclear and cytoplasmic compartments affect mechanotransduction. We hypothesized that alterations to these parameters have resulting mechanosensory consequences.
View Article and Find Full Text PDFCancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression.
View Article and Find Full Text PDFBackground: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
October 2023
Aims: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with endothelial dysfunction. We aimed to determine the effects of prior coronavirus disease 2019 (COVID-19) on the coronary microvasculature accounting for time from COVID-19, disease severity, SARS-CoV-2 variants, and in subgroups of patients with diabetes and those with no known coronary artery disease.
Methods And Results: Cases consisted of patients with previous COVID-19 who had clinically indicated positron emission tomography (PET) imaging and were matched 1:3 on clinical and cardiovascular risk factors to controls having no prior infection.
Electrical stimulation, the application of an electric field to cells and tissues grown in culture to accelerate growth and tight junction formation among endothelial cells, could be impactful in cardiovascular tissue engineering, allotransplantation, and wound healing. Using Electrical Cell Stimulation And Recording Apparatus (ECSARA), the exploration of the stimulatory influences of electric fields of different magnitude and frequencies on growth and proliferation, trans endothelial electrical resistance (TEER) and gene expression of human endothelia cells (HUVECs) were explored. Within the range of endogenous electrical pulses studied, frequency was found to be more significant ( = 0.
View Article and Find Full Text PDF