Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches.
View Article and Find Full Text PDFExpanding into application: covalent organic framework (COF) films are ideally suited for vertical charge transport and serve as precursors of ordered heterojunctions. Their pores, however, were previously too small to accommodate continuous networks of complementary electron acceptors. Four phthalocyanine COFs with increased pore size well into the mesoporous regime are now described.
View Article and Find Full Text PDFTwo-dimensional layered covalent organic frameworks (2D COFs) organize π-electron systems into ordered structures ideal for exciton and charge transport and exhibit permanent porosity available for subsequent functionalization. A 2D COF with the largest pores reported to date was synthesized by condensing 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and 4,4'-diphenylbutadiynebis(boronic acid) (DPB). The COF was prepared as both a high surface area microcrystalline powder as well as a vertically oriented thin film on a transparent single-layer graphene/fused silica substrate.
View Article and Find Full Text PDFCovalent organic frameworks (COFs), in which molecular building blocks form robust microporous networks, are usually synthesized as insoluble and unprocessable powders. We have grown two-dimensional (2D) COF films on single-layer graphene (SLG) under operationally simple solvothermal conditions. The layered films stack normal to the SLG surface and show improved crystallinity compared with COF powders.
View Article and Find Full Text PDFRing-opening polymerization (ROP) of functionalized cyclic carbonates derived from 2,2-bis(methylol)propionic acid (bis-MPA) allows for incorporation of H-bonding urea-functional groups into block copolymers with a potential application of supramolecular drug-delivery systems. The strong H-bonding functionalities of poly(ethylene glycol)-block-poly(ethyl-random-urea carbonate) (PEG-P(E(1-x)-U(x))C) block copolymers not only lowered critical micelles concentration (cmc) of the block copolymer (to 1/4x) in aqueous environment compared to conventional PEG-poly(trimethylene carbonate) (PEG-PTMC) block copolymer without the non-covalent stabilization, but also improved kinetic stability of micelles and Dox-loaded micelles in the presence of a destabilizing agent. It was observed that the incorporation of anticancer drug doxorubicin affected the micellization process of block copolymers in water and caused a sudden increase in sizes of drug-loaded micelles above 200 nm.
View Article and Find Full Text PDF