Publications by authors named "John Collette"

species are a leading cause of opportunistic, hospital-associated bloodstream infections with high mortality rates, typically in immunocompromised patients. Several species, including Candida albicans, the most prevalent cause of infection, belong to the monophyletic CUG clade of yeasts. Innate immune cells such as macrophages are crucial for controlling infection, and C.

View Article and Find Full Text PDF

The failure of polypeptides to achieve conformational maturation following biosynthesis can result in the formation of protein aggregates capable of disrupting essential cellular functions. In the secretory pathway, misfolded asparagine (N)-linked glycoproteins are selectively sorted for endoplasmic reticulum-associated degradation (ERAD) in response to the catalytic removal of terminal alpha-linked mannose units. Remarkably, ER mannosidase I/Man1b1, the first alpha-mannosidase implicated in this conventional N-glycan-mediated process, can also contribute to ERAD in an unconventional, catalysis-independent manner.

View Article and Find Full Text PDF

Lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) and transferred to the Golgi complex by interaction with the Batten disease protein CLN8 (ceroid lipofuscinosis, neuronal, 8). Here we investigated the relationship of this pathway with CLN6, an ER-associated protein of unknown function that is defective in a different Batten disease subtype. Experiments focused on protein interaction and trafficking identified CLN6 as an obligate component of a CLN6-CLN8 complex (herein referred to as EGRESS: ER-to-Golgi relaying of enzymes of the lysosomal system), which recruits lysosomal enzymes at the ER to promote their Golgi transfer.

View Article and Find Full Text PDF

Neurons are sensitive to changes in the dosage of many genes, especially those regulating synaptic functions. Haploinsufficiency of SHANK3 causes Phelan-McDermid syndrome and autism, whereas duplication of the same gene leads to SHANK3 duplication syndrome, a disorder characterized by neuropsychiatric phenotypes including hyperactivity and bipolar disorder as well as epilepsy. We recently demonstrated the functional modularity of Shank3, which suggests that normalizing levels of Shank3 itself might be more fruitful than correcting pathways that function downstream of it for treatment of disorders caused by alterations in SHANK3 dosage.

View Article and Find Full Text PDF

Organelle biogenesis requires proper transport of proteins from their site of synthesis to their target subcellular compartment. Lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) and traffic through the Golgi complex before being transferred to the endolysosomal system, but how they are transferred from the ER to the Golgi is unknown. Here, we show that ER-to-Golgi transfer of lysosomal enzymes requires CLN8, an ER-associated membrane protein whose loss of function leads to the lysosomal storage disorder, neuronal ceroid lipofuscinosis 8 (a type of Batten disease).

View Article and Find Full Text PDF

Clathrin facilitates vesicle formation during endocytosis and sorting in the trans-Golgi network (TGN)/endosomal system. Unlike in mammals, yeast clathrin function requires both the clathrin heavy (CHC) and clathrin light (CLC) chain, since Chc1 does not form stable trimers without Clc1. To further delineate clathrin subunit functions, we constructed a chimeric CHC protein (Chc-YR) , which fused the N-terminus of yeast CHC (1-1312) to the rat CHC residues 1318-1675, including the CHC trimerization region.

View Article and Find Full Text PDF

Macrophages and neutrophils generate a potent burst of reactive oxygen and nitrogen species as a key aspect of the antimicrobial response. While most successful pathogens, including the fungus Candida albicans, encode enzymes for the detoxification of these compounds and repair of the resulting cellular damage, some species actively modulate immune function to suppress the generation of these toxic compounds. We report here that C.

View Article and Find Full Text PDF

The interaction of Candida albicans with phagocytes of the host's innate immune system is highly dynamic, and its outcome directly impacts the progression of infection. While the switch to hyphal growth within the macrophage is the most obvious physiological response, much of the genetic response reflects nutrient starvation: translational repression and induction of alternative carbon metabolism. Changes in amino acid metabolism are not seen, with the striking exception of arginine biosynthesis, which is upregulated in its entirety during coculture with macrophages.

View Article and Find Full Text PDF

The incidence of life-threatening fungal infections has continued to increase in recent years, predominantly in patients debilitated by iatrogenic interventions or immunological dysfunctions. While the picture of the immunology of fungal infections grows increasingly complex, it is clear that the phagocyte-pathogen interaction is a critical determinant of establishing an infection. About 10 years ago, genome-scale approaches began to elucidate the intricate and extensive fungal response to phagocytosis and in the last few years it has become clear that some of this response actively modulates immune cell function.

View Article and Find Full Text PDF

Unlabelled: pH homeostasis is critical for all organisms; in the fungal pathogen Candida albicans, pH adaptation is critical for virulence in distinct host niches. We demonstrate that beyond adaptation, C. albicans actively neutralizes the environment from either acidic or alkaline pHs.

View Article and Find Full Text PDF

Myosins-I are conserved proteins that bear an N-terminal motor head followed by a Tail Homology 1 (TH1) lipid-binding domain. Some myosins-I have an additional C-terminal extension (C(ext)) that promotes Arp2/3 complex-dependent actin polymerization. The head and the tail are separated by a neck that binds calmodulin or calmodulin-related light chains.

View Article and Find Full Text PDF

Clathrin is involved in vesicle formation in the trans-Golgi network (TGN)/endosomal system and during endocytosis. Clathrin recruitment to membranes is mediated by the clathrin heavy chain (HC) N-terminal domain (TD), which forms a seven-bladed beta-propeller. TD binds membrane-associated adaptors, which have short peptide motifs, either the clathrin-box (CBM) and/or the W-box; however, the importance of the TD binding sites for these motifs has not been tested in vivo.

View Article and Find Full Text PDF

Upregulation of cathepsin L expression, whether during development or cell transformation, or mediated by ectopic expression from a plasmid, alters the targeting of the protease and thus its physiological function. Upregulated procathepsin L is targeted to small dense core vesicles and to the dense cores of multivesicular bodies, as well as to lysosomes and to the plasma membrane for selective secretion. The multivesicular vesicles resemble secretory lysosomes characterized in specialized cell types in that they are endosomes that stably store an upregulated protein and they possess the tetraspanin CD63.

View Article and Find Full Text PDF

Ras expression induces increased expression and altered targeting of lysosomal proteases in multiple cell types, but the specific downstream cytoplasmic signaling pathways mediating these changes have not been identified. In this study, we compared the involvement of 3 major Ras effectors, Raf, phosphatidylinositol 3-kinase (PI3K) and Ral guanine nucleotide exchange factor (RalGEF) in the Ras-mediated alteration of lysosomal protease protein expression and targeting in rat 208F fibroblasts and rat ovarian surface epithelial (ROSE) cells. Effector domain mutants of Ras, constitutively activated variants of Raf, PI3K and RalGEF and pharmacologic inhibitors of MEK and PI3K were utilized to determine the role of these downstream pathways in mediating fibroblast transformation and lysosomal protease regulation in the fibroblasts and epithelial cells.

View Article and Find Full Text PDF

In transformed mouse fibroblasts, a significant proportion of the lysosomal cysteine protease cathepsin L remains in cells as an inactive precursor which associates with membranes by a mannose phosphate-independent interaction. When microsomes prepared from these cells were resolved on sucrose gradients, this procathepsin L was localized in dense vesicles distinct from those enriched for growth hormone, which is secreted constitutively when expressed in fibroblasts. Ultrastructural studies using antibodies directed against the propeptide to avoid detection of the mature enzyme in lysosomes revealed that the proenzyme was concentrated in dense cores within small vesicles and multivesicular endosomes which labeled with antibodies specific for CD63.

View Article and Find Full Text PDF