Publications by authors named "John C Montgomery"

Behavioural studies have shown that sharks are capable of directional orientation to sound. However, only one previous experiment addresses the physiological mechanisms of directional hearing in sharks. Here, we used a directional shaker table in combination with the auditory evoked potential (AEP) technique to understand the broadscale directional hearing capabilities in the New Zealand carpet shark (Cephaloscyllium isabellum), rig shark (Mustelus lenticulatus) and school shark (Galeorhinus galeus).

View Article and Find Full Text PDF

Auditory sensitivity measurements have been published for only 12 of the more than 1150 extant species of elasmobranchs (sharks, skates and rays). Thus, there is a need to further understand sound perception in more species from different ecological niches. In this study, the auditory evoked potential (AEP) technique was used to compare hearing abilities of the bottom-dwelling New Zealand carpet shark (Cephaloscyllium isabellum) and two benthopelagic houndsharks (Triakidae), the rig (Mustelus lenticulatus) and the school shark (Galeorhinus galeus).

View Article and Find Full Text PDF

Fish bioacoustics is about the sounds produced by fish, how fish hear, and what they hear. The focus of this article is on the hypothesis that some late pelagic stage reef fish larvae use the marine soundscape to locate reef settlement habitat. The hypothesis is evaluated by consideration of the nature of reef sound, hearing ability in late-stage larval fish, and direct behavioral evidence for orientation to reef sound.

View Article and Find Full Text PDF
Roles for cerebellum and subsumption architecture in central pattern generation.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

March 2024

Within vertebrates, central pattern generators drive rhythmical behaviours, such as locomotion and ventilation. Their pattern generation is also influenced by sensory input and various forms of neuromodulation. These capabilities arose early in vertebrate evolution, preceding the evolution of the cerebellum in jawed vertebrates.

View Article and Find Full Text PDF

Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species.

View Article and Find Full Text PDF

Both the lateral line and the inner ear contribute to near-field dipole source detection in fish. The precise roles these two sensory modalities provide in extracting information about the flow field remain of interest. In this study, evoked potentials (EP, 30-200 Hz) for blind Mexican cavefish were measured in response to a dipole source.

View Article and Find Full Text PDF

Underwater sound is directional and can convey important information about the surrounding environment or the animal emitting the sound. Therefore, sound is a major sensory channel for fishes and plays a key role in many life-history strategies. The effect of anthropogenic noise on aquatic life, which may be causing homogenisation or fragmentation of biologically important signals underwater is of growing concern.

View Article and Find Full Text PDF

The marine environment is the planet's largest, yet in many respects the least accessible. Our human sensory repertoire, with its emphasis on vision and air-adapted hearing, does not serve us well underwater. Underwater vision is often limited and as divers we find hearing of little, or no, use.

View Article and Find Full Text PDF

Fish vocalisation is often a major component of underwater soundscapes. Therefore, interpretation of these soundscapes requires an understanding of the vocalisation characteristics of common soniferous fish species. This study of captive female bluefin gurnard, Chelidonichthys kumu, aims to formally characterise their vocalisation sounds and daily pattern of sound production.

View Article and Find Full Text PDF

Fish sounds are an important biological component of the underwater soundscape. Understanding species-specific sounds and their associated behaviour is critical for determining how animals use the biological component of the soundscape. Using both field and laboratory experiments, we describe the sound production of a nocturnal planktivore, Pempheris adspersa (New Zealand bigeye), and provide calculations for the potential effective distance of the sound for intraspecific communication.

View Article and Find Full Text PDF

The cerebellum is well developed in cartilaginous fishes, with the same cell types (barring basket cells) and organizational features found in other vertebrate groups, including mammals. In particular, the lattice-like organization of cerebellar cortex (with a molecular layer of parallel fibers, interneurons, spiny Purkinje cell dendrites, and climbing fibers) is a defining characteristic. In addition to the cerebellum, cartilaginous fishes have cerebellum-like structures in the dorsolateral wall of the hindbrain.

View Article and Find Full Text PDF

The yellowtail kingfish, Seriola lalandi, shows a distribution of anaerobic and aerobic (red and pink) muscle fibres along the trunk that is characteristic of active pelagic fishes. The athletic capacity of S. lalandi is also shown by its relative high standard metabolic rate and optimal (i.

View Article and Find Full Text PDF

The auditory evoked potential technique has been used for the past 30 years to evaluate the hearing ability of fish. The resulting audiograms are typically presented in terms of sound pressure (dB re. 1 μPa) with the particle motion (dB re.

View Article and Find Full Text PDF

Aggregations of organisms, ranging from zooplankton to whales, are an extremely common phenomenon in the pelagic zone; perhaps the best known are fish schools. Social aggregation is a special category that refers to groups that self-organize and maintain cohesion to exploit benefits such as protection from predators, and location and capture of resources more effectively and with greater energy efficiency than could a solitary individual. In this review we explore general aggregation principles, with specific reference to pelagic organisms; describe a range of new technologies either designed for studying aggregations or that could potentially be exploited for this purpose; report on the insights gained from theoretical modelling; discuss the relationship between social aggregation and ocean management; and speculate on the impact of climate change.

View Article and Find Full Text PDF

Blind Mexican cave fish (Astyanax fasciatus) are able to sense detailed information about objects by gliding alongside them and sensing changes in the flow field around their body using their lateral line sensory system. Hence the fish are able to build hydrodynamic images of their surroundings. This study measured the flow fields around blind cave fish using particle image velocimetry (PIV) as they swam parallel to a wall.

View Article and Find Full Text PDF

Blind Mexican cave fish (Astyanax fasciatus) sense the presence of nearby objects by sensing changes in the water flow around their body. The information available to the fish using this hydrodynamic imaging ability depends on the properties of the flow field it generates while gliding and how this flow field is altered by the presence of objects. Here, we used particle image velocimetry to measure the flow fields around gliding blind cave fish as they moved through open water and when heading towards a wall.

View Article and Find Full Text PDF

Several patterns of brain allometry previously observed in mammals have been found to hold for sharks and related taxa (chondrichthyans) as well. In each clade, the relative size of brain parts, with the notable exception of the olfactory bulbs, is highly predictable from the total brain size. Compared with total brain mass, each part scales with a characteristic slope, which is highest for the telencephalon and cerebellum.

View Article and Find Full Text PDF

The mechanosensory lateral line is found in all aquatic fish and amphibians. It provides a highly sensitive and versatile hydrodynamic sense that is used in a wide range of behavior. Hydrodynamic stimuli of biological interest originate from both abiotic and biotic sources, and include water currents, turbulence and the water disturbances caused by other animals, such as prey, predators and conspecifics.

View Article and Find Full Text PDF

Interspecific variation in relative brain size (encephalization), the relative size of the five major brain areas (the telencephalon, diencephalon, mesencephalon, cerebellum, and medulla) and the level of cerebellar foliation was assessed in over 20 representative species of batoid (skates and rays), from eight families. Using species as independent data points and phylogenetically independent contrasts, relationships among each of the neuroanatomical variables and two ecological variables, habitat and lifestyle, were assessed. Variation in relative brain size and brain organization appears to be strongly correlated with phylogeny.

View Article and Find Full Text PDF

Blind Mexican cave fish (Astyanax fasciatus) lack a functioning visual system, and are known to use self-generated water motion to sense their surroundings; an ability termed hydrodynamic imaging. Nearby objects distort the flow field created by the motion of the fish. These flow distortions are sensed by the mechanosensory lateral line.

View Article and Find Full Text PDF

A systematic study of the ambient noise in the shallow coastal waters of north-eastern New Zealand shows large temporal variability in acoustic power levels between seasons, moon phase and the time of day. Ambient noise levels were highest during the new moon and the lowest during the full moon. Ambient noise levels were also significantly higher during summer and lower during winter.

View Article and Find Full Text PDF

Chondrichthyans occupy a basal place in vertebrate evolution and offer a relatively unexplored opportunity to study the evolution of vertebrate brains. This study examines the brain morphology of 22 species of deep-sea sharks and holocephalans, in relation to both phylogeny and ecology. Both relative brain size (expressed as residuals) and the relative development of the five major brain areas (telencephalon, diencephalon, mesencephalon, cerebellum, and medulla) were assessed.

View Article and Find Full Text PDF

The widespread variation in brain size and complexity that is evident in sharks and holocephalans is related to both phylogeny and ecology. Relative brain size (expressed as encephalization quotients) and the relative development of the five major brain areas (the telencephalon, diencephalon, mesencephalon, cerebellum, and medulla) was assessed for over 40 species from 20 families that represent a range of different lifestyles and occupy a number of habitats. In addition, an index (1-5) quantifying structural complexity of the cerebellum was created based on length, number, and depth of folds.

View Article and Find Full Text PDF

The pelagic life history phase of reef fishes and decapod crustaceans is complex, and the evolutionary drivers and ecological consequences of this life history strategy remain largely speculative. There is no doubt, however, that this life history phase is very significant in the demographics of reef populations. Here, we initially discuss the ecology and evolution of the pelagic life histories as a context to our review of the role of acoustics in the latter part of the pelagic phase as the larvae transit back onto a reef.

View Article and Find Full Text PDF

Chemosensory communication may be crucial during mate choice and mating in the southern temperate spiny lobster Jasus edwardsii to ensure that females mate with large males capable of supplying adequate numbers of sperm during the short mating window. To clarify the role of pheromones during this process, three laboratory experiments were carried out. In an experiment where the output of urine, which contains sex-specific pheromones, from large and small catheterized males was switched, large post-molt females did not make a clear choice of mate.

View Article and Find Full Text PDF