The induction of systemic antibody titers against hemagglutinin has long been the main focus of influenza vaccination strategies, but mucosal immunity has also been shown to play a key role in the protection against respiratory viruses. By vaccinating and challenging healthy volunteers, we demonstrated that inactivated influenza vaccine (IIV) modestly reduced the rate of influenza while predominantly boosting serum antibody titers against hemagglutinin (HA) and HA stalk, a consequence of the low neuraminidase (NA) content of IIV and the intramuscular route of administration. The viral challenge induced nasal and serum responses against both HA and NA.
View Article and Find Full Text PDFInfluenza A viruses (IAVs) present major public health threats from annual seasonal epidemics and pandemics and from viruses adapted to a variety of animals including poultry, pigs, and horses. Vaccines that broadly protect against all such IAVs, so-called "universal" influenza vaccines, do not currently exist but are urgently needed. Here, we demonstrated that an inactivated, multivalent whole-virus vaccine, delivered intramuscularly or intranasally, was broadly protective against challenges with multiple IAV hemagglutinin and neuraminidase subtypes in both mice and ferrets.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by respiratory distress, multiorgan dysfunction, and, in some cases, death. The pathological mechanisms underlying COVID-19 respiratory distress and the interplay with aggravating risk factors have not been fully defined. Lung autopsy samples from 18 patients with fatal COVID-19, with symptom onset-to-death times ranging from 3 to 47 days, and antemortem plasma samples from 6 of these cases were evaluated using deep sequencing of SARS-CoV-2 RNA, multiplex plasma protein measurements, and pulmonary gene expression and imaging analyses.
View Article and Find Full Text PDFBackground: Preclinical animal studies and retrospective human studies suggest that adult females have worse outcomes from influenza than males. Prospective studies in humans are missing.
Methods: Data from 164 healthy volunteers who underwent influenza A/California/04/2009/H1N1 challenge were compiled to compare differences between sexes.
Despite the importance of immunity against neuraminidase (NA), NA content and immunogenicity are neglected in current influenza vaccines. To address this, a recombinant N1/N2 NA vaccine (NAV) was developed. Stability assays were used to determine optimal temperature and buffer conditions for vaccine storage.
View Article and Find Full Text PDFTreatment for many viral infections of the central nervous system (CNS) remains only supportive. Here we address a remaining gap in our knowledge regarding how the CNS and immune systems interact during viral infection. By examining the regulation of the immune and nervous system processes in a nonhuman primate model of West Nile virus neurological disease, we show that virus infection disrupts the homeostasis of the immune-neural-synaptic axis via induction of pleiotropic genes with distinct functions in each component of the axis.
View Article and Find Full Text PDFThe conserved region of influenza hemagglutinin (HA) stalk (or stem) has gained attention as a potent target for universal influenza vaccines. Although the HA stalk region is relatively well conserved, the evolutionarily dynamic nature of influenza viruses raises concerns about the possible emergence of viruses carrying stalk escape mutation(s) under sufficient immune pressure. Here we show that immune pressure on the HA stalk can lead to expansion of escape mutant viruses in study participants challenged with a 2009 H1N1 pandemic influenza virus inoculum containing an A388V polymorphism in the HA stalk (45% wild type and 55% mutant).
View Article and Find Full Text PDFmAbs are a possible adjunct to vaccination and drugs in treatment of influenza virus infection. However, questions remain whether small animal models accurately predict efficacy in humans. We have established the pig, a large natural host animal for influenza, with many physiological similarities to humans, as a robust model for testing mAbs.
View Article and Find Full Text PDFThe 2018-2019 period marks the centennial of the "Spanish" influenza pandemic, which caused at least 50 million deaths worldwide. The unprecedented nature of the pandemic's sudden appearance and high fatality rate serve as a stark reminder of the threat influenza poses. Unusual features of the 1918-1919 pandemic, including age-specific mortality and the high frequency of severe pneumonias, are still not fully understood.
View Article and Find Full Text PDFNasal wash samples from 15 human volunteers challenged with GMP manufactured influenza A/California/04/2009(H1N1) and from 5 naturally infected influenza patients of the 2009 pandemic were deep sequenced using viral targeted hybridization enrichment. Ten single nucleotide polymorphism (SNP) positions were found in the challenge virus. Some of the nonsynonymous changes in the inoculant virus were maintained in some challenge participants, but not in others, indicating that virus is evolving away from the Vero cell adapted inoculant, for example SNPs in the neuraminidase.
View Article and Find Full Text PDFIn this study, we examined the relationships between anti-influenza virus serum antibody titers, clinical disease, and peripheral blood leukocyte (PBL) global gene expression during presymptomatic, acute, and convalescent illness in 83 participants infected with 2009 pandemic H1N1 virus in a human influenza challenge model. Using traditional statistical and logistic regression modeling approaches, profiles of differentially expressed genes that correlated with active viral shedding, predicted length of viral shedding, and predicted illness severity were identified. These analyses further demonstrated that challenge participants fell into three peripheral blood leukocyte gene expression phenotypes that significantly correlated with different clinical outcomes and prechallenge serum titers of antibodies specific for the viral neuraminidase, hemagglutinin head, and hemagglutinin stalk.
View Article and Find Full Text PDFBackground: Identification of correlates of protection against human influenza A virus infection is important in development of broadly protective ("universal") influenza vaccines. Certain assumptions underlie current vaccine developmental strategies, including that infection with a particular influenza A virus should offer long-term or lifelong protection against that strain, preventing reinfection. In this study we report observations made when 7 volunteers participated in sequential influenza challenge studies where they were challenged intranasally using the identical influenza A(H1N1)pdm09 virus approximately 1 year apart.
View Article and Find Full Text PDFInfluenza A virus (IAV) infections are a major public health concern, including annual epidemics, epizootic outbreaks, and pandemics. A significant IAV epizootic outbreak was the H7N9 avian influenza A outbreak in China, which was first detected in 2013 and which has spread over 5 waves from 2013 to 2017, causing human infections in many different Chinese provinces. Here, RNA from primary clinical throat swab samples from 20 H7N9-infected local patients with different clinical outcomes, who were admitted and treated at one hospital in Shanghai, China, from April 2013 to April 2015, was analyzed.
View Article and Find Full Text PDFNeutrophils are essential cells of host innate immunity. Although the role of neutrophils in defense against bacterial and fungal infections is well characterized, there is a relative paucity of information about their role against viral infections. Influenza A virus (IAV) infection can be associated with secondary bacterial coinfection, and it has long been posited that the ability of IAV to alter normal neutrophil function predisposes individuals to secondary bacterial infections.
View Article and Find Full Text PDFThe 2013-2015 outbreak of Ebola virus disease in Guinea, Liberia, and Sierra Leone was unprecedented in the number of documented cases, but there have been few published reports on immune responses in clinical cases and their relationships with the course of illness and severity of Ebola virus disease. Symptoms of Ebola virus disease can include severe headache, myalgia, asthenia, fever, fatigue, diarrhea, vomiting, abdominal pain, and hemorrhage. Although experimental treatments are in development, there are no current U.
View Article and Find Full Text PDFBackground: Influenza results in up to 500,000 deaths annually. Seasonal influenza vaccines have an estimated 60% effectiveness, but provide little or no protection against novel subtypes, and may be less protective in high-risk groups. Neuraminidase inhibitors are recommended for the treatment of severe influenza infection, but are not proven to reduce mortality in severe disease.
View Article and Find Full Text PDFTo study bacterial co-infection following 1918 H1N1 influenza virus infection, mice were inoculated with the 1918 influenza virus, followed by Streptococcus pneumoniae (SP) 72 h later. Co-infected mice exhibited markedly more severe disease, shortened survival time and more severe lung pathology, including widespread thrombi. Transcriptional profiling revealed activation of coagulation only in co-infected mice, consistent with the extensive thrombogenesis observed.
View Article and Find Full Text PDFUnlabelled: Influenza virus infections are a global public health problem, with a significant impact of morbidity and mortality from both annual epidemics and pandemics. The current strategy for preventing annual influenza is to develop a new vaccine each year against specific circulating virus strains. Because these vaccines are unlikely to protect against an antigenically divergent strain or a new pandemic virus with a novel hemagglutinin (HA) subtype, there is a critical need for vaccines that protect against all influenza A viruses, a so-called "universal" vaccine.
View Article and Find Full Text PDFInfluenza A virus infections in humans generally cause self-limited infections, but can result in severe disease, secondary bacterial pneumonias, and death. Influenza viruses can replicate in epithelial cells throughout the respiratory tree and can cause tracheitis, bronchitis, bronchiolitis, diffuse alveolar damage with pulmonary edema and hemorrhage, and interstitial and airspace inflammation. The mechanisms by which influenza infections result in enhanced disease, including development of pneumonia and acute respiratory distress, are multifactorial, involving host, viral, and bacterial factors.
View Article and Find Full Text PDFUnlabelled: Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus.
View Article and Find Full Text PDFThe 1918 influenza pandemic caused over 40 million deaths worldwide, with 675,000 deaths in the United States alone. Studies in several experimental animal models showed that 1918 influenza virus infection resulted in severe lung pathology associated with dysregulated immune and cell death responses. To determine if reactive oxygen species produced by host inflammatory responses play a central role in promoting severity of lung pathology, we treated 1918 influenza virus-infected mice with the catalytic catalase/superoxide dismutase mimetic, salen-manganese complex EUK-207 beginning 3 days postinfection.
View Article and Find Full Text PDFStaphylococcus aureus community-acquired pneumonia is often associated with influenza or an influenza-like syndrome. Morbidity and mortality due to methicillin-resistant S. aureus (MRSA) or influenza and pneumonia, which includes bacterial co-infection, are among the top causes of death by infectious diseases in the United States.
View Article and Find Full Text PDFMost biopsy and autopsy tissues are formalin-fixed and paraffin-embedded (FFPE), but this process leads to RNA degradation that limits gene expression analysis. The RNA genome of the 1918 pandemic influenza virus was previously determined in a 9-year effort by overlapping RT-PCR from post-mortem samples. Here, the full genome of the 1918 virus at 3000× coverage was determined in one high-throughput sequencing run of a library derived from total RNA of a 1918 FFPE sample after duplex-specific nuclease treatments.
View Article and Find Full Text PDFSegment 7 of influenza A virus produces up to four mRNAs. Unspliced transcripts encode M1, spliced mRNA2 encodes the M2 ion channel, while protein products from spliced mRNAs 3 and 4 have not previously been identified. The M2 protein plays important roles in virus entry and assembly, and is a target for antiviral drugs and vaccination.
View Article and Find Full Text PDF