Publications by authors named "John C Hemminger"

A single platinum nanowire (PtNW) chemiresistive sensor for ethylene gas is reported. In this application, the PtNW performs three functions: (1) Joule self-heating to a specified temperature, (2) resistance-based temperature measurement, and (3) detection of ethylene in air as a resistance change. Ethylene gas in air is detected as a reduction in nanowire resistance by up to 4.

View Article and Find Full Text PDF

The capacity of X-ray photoelectron spectroscopy (XPS) to provide information on the electronic structure of molecular organometallic complexes of Ln(II) ions (Ln = lanthanide) has been examined for the first time. XPS spectra were obtained on the air-sensitive molecular trivalent 4f Cp'Ln complexes (Ln = Sm, Eu, Gd, Tb; Cp' = CHSiMe) and compared to those of the highly reactive divalent complexes, [K(crypt)][Cp'Ln] (crypt = 2.2.

View Article and Find Full Text PDF

Liquid jet X-ray photoelectron spectroscopy was used to investigate changes in the local electronic structure of acetic acid in the bulk of aqueous solutions induced by solvation effects. These effects manifest themselves as shifts in the difference in the carbon 1s binding energy (ΔBE) between the methyl and carboxyl carbons of acetic acid. Furthermore, molecular dynamics simulations, coupled with correlated electronic structure calculations of the first solvation sphere, provide insight into the number of water molecules directly interacting with the carboxyl group that are required to match the ΔBE from the photoelectron spectroscopy experiments.

View Article and Find Full Text PDF

Generalized-Kohn-Sham (GKS) orbital energies obtained self-consistently from the random phase approximation energy functional with a semicanonical projection (spRPA) were recently shown to rival the accuracy of GW quasiparticle energies for valence ionization potentials. Here, we extend the scope of GKS-spRPA correlated one-particle energies from frontier-orbital ionization to core orbital ionization energies, which are notoriously difficult for GW and other response methods due to strong orbital relaxation effects. For a benchmark consisting of 23 1s core electron binding energies (CEBEs) of second-row elements, chemical shifts estimated from GKS-spRPA one-particle energies yield mean absolute deviations from experiment of 0.

View Article and Find Full Text PDF

Liquid jet X-ray photoelectron spectroscopy is used under near ambient pressure conditions to characterize Fe aqueous solutions. Counter ions, such as Cl and Br ions, added to the solution lead to changes in the first solvation sphere of the Fe-aqua complex in solution. Binding energy shifts of 0.

View Article and Find Full Text PDF

It is now well established by numerous experimental and computational studies that the adsorption propensities of inorganic anions conform to the Hofmeister series. The adsorption propensities of inorganic cations, such as the alkali metal cations, have received relatively little attention. Here we use a combination of liquid-jet X-ray photoelectron experiments and molecular dynamics simulations to investigate the behavior of K and Li ions near the interfaces of their aqueous solutions with halide ions.

View Article and Find Full Text PDF

Titania has attracted significant interest due to its broad catalytic applications, many of which involve titania nanoparticles in contact with aqueous electrolyte solutions. Understanding the titania nanoparticle/electrolyte interface is critical for the rational development of such systems. Here, we have employed liquid-jet ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to investigate the solid/electrolyte interface of 20 nm diameter TiO2 nanoparticles in 0.

View Article and Find Full Text PDF

Platinum (Pt)-modified palladium (Pd) nanowires (or Pd@Pt nanowires) are prepared with controlled Pt coverage. These Pd@Pt nanowires are used as resistive gas sensors for the detection of hydrogen gas in air, and the influence of the Pt surface layer is assessed. Pd nanowires with dimensions of 40 nm (h) × 100 nm (w) × 50 μm (l) are first prepared using lithographically patterned nanowire electrodeposition.

View Article and Find Full Text PDF

Photoelectron angular distributions (PADs) from the liquid-water surface and from bulk liquid water are reported for water oxygen-1s ionization. Although less so than for the gas phase, the measured PADs from the liquid are remarkably anisotropic, even at electron kinetic energies lower than 100 eV, when elastic scattering cross sections for the outgoing electrons with other water molecules are large. The PADs reveal that theoretical estimates of the inelastic mean free path are likely too long at low kinetic energies, and hence the electron probing depth in water, near threshold ionization, appears to be considerably smaller than so far assumed.

View Article and Find Full Text PDF

Development of electrocatalysts for the conversion of water to dioxygen is important in a variety of chemical applications. Despite much research in this field, there are still several fundamental issues about the electrocatalysts that need to be resolved. Two such problems are that the catalyst mass loading on the electrode is subject to large uncertainties and the wetted surface area of the catalyst is often unknown and difficult to determine.

View Article and Find Full Text PDF

PbSe quantum dot (QD) field effect transistors (FETs) with air-stable electron mobilities above 7 cm(2) V(-1) s(-1) are made by infilling sulfide-capped QD films with amorphous alumina using low-temperature atomic layer deposition (ALD). This high mobility is achieved by combining strong electronic coupling (from the ultrasmall sulfide ligands) with passivation of surface states by the ALD coating. A series of control experiments rule out alternative explanations.

View Article and Find Full Text PDF

Iron pyrite (cubic FeS2) is a promising candidate absorber material for earth-abundant thin-film solar cells. Here, we report on phase-pure, large-grain, and uniform polycrystalline pyrite films that are fabricated by solution-phase deposition of an iron(III) acetylacetonate molecular ink followed by sequential annealing in air, H2S, and sulfur gas at temperatures up to 550 °C. Phase and elemental compositions of the films are characterized by conventional and synchrotron X-ray diffraction, Raman spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Arrays of mesoporous manganese dioxide, mp-MnO(2), nanowires were electrodeposited on glass and silicon surfaces using the lithographically patterned nanowire electrodeposition (LPNE) method. The electrodeposition procedure involved the application, in a Mn(ClO(4))(2)-containing aqueous electrolyte, of a sequence of 0.60 V (vs MSE) voltage pulses delineated by 25 s rest intervals.

View Article and Find Full Text PDF

Nanocrystalline cadmium selenide (nc-CdSe) nanowires were prepared using the lithographically patterned nanowire electrodeposition method. Arrays of 350 linear nc-CdSe nanowires with lateral dimensions of 60 nm (h) × 200 nm (w) were patterned at 5 μm pitch on glass. nc-CdSe nanowires electrodeposited from aqueous solutions at 25 °C had a mean grain diameter, d(ave), of 5 nm.

View Article and Find Full Text PDF

Ordered linear arrays of titanium dioxide nanoparticles were fabricated on highly oriented pyrolytic graphite utilizing a step edge decoration method. Ag- or Pt-based nanoparticles were then photodeposited onto the titanium dioxide nanoparticles (∼18 nm) to simultaneously verify photocatalytic activity and to demonstrate a viable route to load the titanium dioxide nanoparticles with metals. Scanning electron microscopy and atomic force microscopy determined the morphology, size, and distribution of the particles.

View Article and Find Full Text PDF

Molecular-level insight into the dissociation of nitric acid in water is obtained from X-ray photoelectron spectroscopy and first-principles molecular dynamics (MD) simulations. Our combined studies reveal surprisingly abrupt changes in solvation configurations of undissociated nitric acid at approximately 4 M concentration. Experimentally, this is inferred from shifts of the N1s binding energy of HNO(3)(aq) as a function of concentration and is associated with variations in the local electronic structure of the nitrogen atom.

View Article and Find Full Text PDF

X-Ray photoelectron spectroscopy has been extended to colloidal nanoparticles in aqueous solution using a liquid microjet in combination with synchrotron radiation, which allowed for depth-dependent measurements. Two distinct electronic structures are evident in the Si 2p photoelectron spectrum of 7 nm SiO(2)-nanoparticles at pH 10. A core-shell model is proposed where only the outermost layer of SiO(2) nanoparticles, which is mainly composed of deprotonated silanol groups, >Si-O(-), interacts with the solution.

View Article and Find Full Text PDF

Single-molecule fluorescence microscopy provided information about the real-time distribution of chemical reactivity on silicon oxide supports at the solution-surface interface, at a level of detail which would be unavailable from a traditional ensemble technique or from a technique that imaged the static physical properties of the surface. Chemical reactions on the surface were found to be uncorrelated; that is, the chemical reaction of one metal complex did not influence the location of a future chemical reaction of another metal complex.

View Article and Find Full Text PDF

Palladium nanowires prepared using the lithographically patterned nanowire electrodeposition (LPNE) method are used to detect hydrogen gas (H2). These palladium nanowires are prepared by electrodepositing palladium from EDTA-containing solutions under conditions favoring the formation of β-phase PdHx. The Pd nanowires produced by this procedure are characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

Thin-film water is ubiquitous in nature, occurring on virtually all surfaces exposed to the ambient environment. In particular, alkali halide salts below their deliquescence point are expected to be coated with water films from one molecular layer to a few nanometers thick. While salt ion mobility in thin-film water has been characterized in the literature, little is known about the chemistry occurring within these films.

View Article and Find Full Text PDF

Several complementary experimental and theoretical methodologies were used to explore water uptake on sodium chloride (NaCl) particles containing varying amounts of sodium dodecyl sulfate (SDS) to elucidate the interaction of water with well-defined, environmentally relevant surfaces. Experiments probed the hygroscopic growth of mixed SDS/NaCl nanoparticles that were generated by electrospraying aqueous 2 g/L solutions containing SDS and NaCl with relative NaCl/SDS weight fractions of 0, 5, 11, 23, or 50 wt/wt %. Particles with mobility-equivalent diameters of 14.

View Article and Find Full Text PDF

Nanowires of lead telluride (PbTe) were patterned on glass surfaces using lithographically patterned nanowire electrodeposition (LPNE). LPNE involved the fabrication by photolithography of a contoured nickel nanoband that is recessed by approximately 300 nm into a horizontal photoresist trench. Cubic PbTe was then electrodeposited from a basic aqueous solution containing Pb(2+) and TeO(3)(2-) at the nickel nanoband using a cyclic deposition/stripping potential program in which lead-rich PbTe was first deposited in a negative-going potential scan and excess lead was then anodically stripped from the nascent nanowire by scanning in the positive direction to produce near stoichiometric PbTe.

View Article and Find Full Text PDF

We investigate electronic devices consisting of individual, metallic, single-walled carbon nanotubes contacted by Pt electrodes in a field effect transistor configuration, focusing on improvements to the metal-nanotube contact resistance as the devices are annealed in inert environments including ultrahigh vacuum. At moderate temperatures (T < 880 K), thermal processing results in high resistance contacts with thermally activated barriers. Higher temperatures (T > 880 K) achieve nearly transparent contacts.

View Article and Find Full Text PDF