Publications by authors named "John C Hamel"

Susceptibility and resistance to systemic autoimmunity are genetically regulated. This is particularly true for murine mercury-induced autoimmunity (mHgIA) where DBA/2J mice are considered resistant to disease including polyclonal B cell activation, autoantibody responses, and immune complex deposits. To identify possible mechanisms for the resistance to mHgIA, we exposed mHgIA sensitive B10.

View Article and Find Full Text PDF

IFN-γ is essential for idiopathic and murine mercury-induced systemic autoimmunity (mHgIA), and heterozygous IFN-γ(+/-) mice also exhibit reduced disease. This suggests that blocking specific IFN-γ-related pathways that may only partially inhibit IFN-γ production or function will also suppress autoimmunity. To test this hypothesis, mice deficient in genes regulating IFN-γ expression (Casp1, Nlrp3, Il12a, Il12b, Stat4) or function (Ifngr1, Irf1) were examined for mHgIA susceptibility.

View Article and Find Full Text PDF

GW bodies (GWBs), or mammalian P bodies, proposed to be involved in messenger RNA storage and/or degradation, have recently been linked to RNA interference and microRNA (miRNA) processing. We report that endogenous let-7 miRNA co-precipitates with the GW182 protein complex. In addition, knockdown of two proteins, Drosha and its protein partner DGCR8, which are vital to the generation of mature miRNA, results in the loss of GWBs.

View Article and Find Full Text PDF

GW bodies (GWBs) are cytoplasmic foci initially identified through the use of an autoimmune serum targeting the marker protein, GW182. GWBs were first considered as both storage centers for a specific subset of mRNAs and degradation sites for mRNAs. Interestingly, they are known to vary in size and number throughout the cell cycle and are largest in size and most abundant in number during the late S and G2 phases.

View Article and Find Full Text PDF

The GW182 RNA-binding protein was initially shown to associate with a specific subset of mRNAs and to reside within discrete cytoplasmic foci named GW bodies (GWBs). GWBs are enriched in proteins that are involved in mRNA degradation. Recent reports have shown that exogenously introduced human Argonaute-2 (Ago2) is also enriched in GWBs, indicating that RNA interference function may be somehow linked to these structures.

View Article and Find Full Text PDF

Anti-Golgi complex autoantibodies are found primarily in patients with Sjögren's syndrome and systemic lupus erythematosus, although they are not restricted to these diseases. Several Golgi autoantigens have been identified that represent a small family of proteins. Common features of all Golgi autoantigens appear to be their distinct structural organization of multiple alpha-helical coiled-coil rods in the central domains flanked by non-coiled-coil N-termini and C-termini, and their localization to the cytoplasmic face of Golgi cisternae.

View Article and Find Full Text PDF

Objective: To characterize the 15-kd human SmD-like autoantigen and its associated proteins previously shown to be recognized by IgM antibodies in patients with Epstein-Barr virus (EBV)-induced infectious mononucleosis.

Methods: The full-length complementary DNA for the 15-kd protein was expressed as recombinant protein and analyzed for reactivity using biochemical analysis and immunoprecipitation (IP).

Results: The 15-kd protein was determined to be the human like-Sm protein LSm4 (hLSm4).

View Article and Find Full Text PDF